Answer:
You can use a number line to subtract -6 from -7. The difference is -1.
Answer:

Step-by-step explanation:
In rectangle ABCD, AB = 6, BC = 8, and DE = DF.
ΔDEF is one-fourth the area of rectangle ABCD.
We want to determine the length of EF.
First, we can find the area of the rectangle. Since the length AB and width BC measures 6 by 8, the area of the rectangle is:

The area of the triangle is 1/4 of this. Therefore:

The area of a triangle is half of its base times its height. The base and height of the triangle is DE and DF. Therefore:

Since DE = DF:

Thus:

Since ABCD is a rectangle, ∠D is a right angle. Then by the Pythagorean Theorem:

Therefore:

Square:

Add:

And finally, we can take the square root of both sides:

Answer:
PG ≅ SG (Given)
PT ≅ ST (Given)
GT = GT (Common)
∴ ∠GPT ≅ ∠GST (SSS Congruency Axiom)
Step-by-step explanation:
<u>Given</u>: PG ≅ SG and PT ≅ ST
<u>To Prove</u>: ∠GPT ≅ ∠GST
<u>Proof</u>: PG ≅ SG (Given)
PT ≅ ST (Given)
GT = GT (Common)
∴ ∠GPT ≅ ∠GST (SSS Congruency Axiom).
<u>SSS Congruency Axiom</u>: If three pairs of sides of two triangles are equal in length, then the triangles are congruent.
<u>Congruence</u>: Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Two triangles are congruent if their corresponding sides are equal in length, and their corresponding angles are equal in measure.