Answer:
Electrical breakdown.
Explanation:
When two conductors are relatively close enough, and have a very large voltage between them, it can lead to a Dielectric breakdown. A dielectric breakdown occurs when an insulator is subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. The air between the conductors is the insulator that breaks down, leading to an electrical discharge arc to flow between the two conductors. This electrical breakdown can cause catastrophic failure of electrical equipment, and fire hazards.
Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Answer:
Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. They have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths from 1 millimeter to 100 kilometers.
Explanation:
Answer:
a) 0.31 rad/s
b) 100 J
c) 6.67 W
Explanation:
(a) the force would generate a torque of:

According to Newton 2nd law, the angular acceleration would be

It starts from rest, then after 15s it would achieve a speed of

(b) The distance angle swept by it is:

Hence the work by the child

c) Average power to work per time unit

Suppose car A is moving with a velocity Va, and car b with a velocity Vb,
According the principle of conservation of momentum:
Va x Ma + Vb x Mb = (Ma + Mb) V
V = (Va x Ma + Vb x Mb)/(Ma +Mb)
V = speed of cars after coupling
V = (Va x 20 mg + Vb x 15 mg)/(20 mg + 15 mg)
Put in the values of Va and Vb, and get the V