Answer:
v = 29.4 m / s
Explanation:
For this exercise we can use the conservation of mechanical energy
Lowest starting point.
Em₀ = K = ½ m v²
final point. Higher
= U = m g h
Let's use trigonometry to lock her up
cos 60 = y / L
y = L cos 60
Height is the initial length minus the length at the maximum angle
h = L - L cos 60
h = L (1- cos 60)
energy is conserved
Em₀ = Em_{f}
½ m v² = mgL (1 - cos 60)
v = 2g L (1- cos 60)
let's calculate
v² = 2 9.8 3.0 (1- cos 60)
v = 29.4 m / s
The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>