1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
2 years ago
6

Help asap please thank you

Physics
2 answers:
Tom [10]2 years ago
8 0

Answer:

the answer its time

v = d/t

Ghella [55]2 years ago
8 0

Answer:distance

Explanation:

You might be interested in
At the equator earth rotates with a velocity of about 465 m/s.
Dafna1 [17]
The given velocity is 465 m/s.

Part a.
465 \,  \frac{m}{s} =(465 \times 10^{-3} \,  \frac{km}{s})*( 3600 \,  \frac{s}{h} ) = 1674 \,  \frac{km}{h}
Answer: 1674 km/h

Part b.
1674  \frac{km}{h} = (1674 \,  \frac{km}{h})*(24 \,  \frac{h}{day}  ) = 40176 \,  \frac{km}{day}
Answer: 40,176 km/day.

 
3 0
3 years ago
Read 2 more answers
Convert planks constant in cgs system
dezoksy [38]

in cgs system, plank's constant= h=6.626 x10⁻²⁶ erg s

Value of Plank's constant in SI system= 6.626 x10⁻³⁴ Js

now 1 Joule= 10⁷ ergs

so h= 6.626 x10⁻³⁴ Js (10⁷ ergs/1J)

h=6.626 x10⁻²⁷ erg s

7 0
3 years ago
A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. a
USPshnik [31]
Refer to the diagram shown below.

Let I = the moment of inertia of the wheel.
α = 0.81 rad/s², the angular acceleration
r = 0.33 m, the radius of the weel
F = 260 N, the applied tangential force

The applied torque is
T = F*r
   = (260 N)*(0.33 m)
   = 85.8 N-m

By definition,
T = I*α

Therefore,
I = T/α
  = (85.8 N-m)/(0.81 rad/s²)
  = 105.93 kg-m²

Answer: 105.93 kg-m²

6 0
3 years ago
If the distance between two charges is doubled, by what factor is the magnitude of the electric force changed? F_e final/F_e, in
motikmotik

To solve this problem we will apply the concepts related to Coulomb's law for which the Electrostatic Force is defined as,

F_{initial} = \frac{kq_1q_2}{r^2}

Here,

k = Coulomb's constant

q_{1,2} = Charge at each object

r = Distance between them

As the distance is doubled so,

F_{final} = \frac{kq_1q_2}{( 2r )^2}

F_{final} = \frac{ kq_1q_2}{ 4r^2}

F_{final} = \frac{1}{4} \frac{ kq_1q_2}{r^2}

F_{final} = \frac{1}{4} F_{initial}

\frac{F_{final}}{ F_{initial}} = \frac{1}{4}

Therefore the factor is 1/4

6 0
3 years ago
What do we call the small changes that
Lelu [443]

Answer:

The "butterfly Effect"

Explanation:

The "butterfly effect" will probably have big changes in the future.

6 0
2 years ago
Other questions:
  • Islands in the middle of the oceans (for example, Great Britain, Hawaii, Bermuda) tend to have more stable climates with smaller
    7·1 answer
  • A block of mass m1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. it collides with block of mass m2 = 1.7
    6·1 answer
  • On the Moon, the acceleration due to the effect of gravity is only about 1/6 of that on Earth. An astronaut whose weight on Eart
    15·1 answer
  • An object has a mass of 14 grams and a density of 7 g/mL. When placed in water it sinks. What is the Volume of water displaced?
    7·1 answer
  • What kind of energy transformation occurs when you lite a firecracker
    13·2 answers
  • HELP!!
    5·1 answer
  • Identify the relationship between strong forces and electric forces in the nucleus.
    9·1 answer
  • A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 10.0 min
    13·1 answer
  • Chuyển động thẳng đều là gì
    7·1 answer
  • The force of repulsion that two like charges exert on each other 5N. what will be if the distance between the charge is decrease
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!