Answer:
Explanation:
The work required to push will be equal to work done by friction . Let d be the displacement required .
force of friction = mg x μ where m is mass of the suitcase , μ be the coefficient of friction
work done by force of friction
mg x μ x d = 660
80 x 9.8 x .272 x d = 660
d = 3 .1 m .
Explanation:
an electrical load is the part of an electrical circuit in which current is transformed into something useful. examples include a lightbulb, a resistor and a motor. a load converts electricity into heat, light or motion. put another way, the part of a circuit that connects to a well-defined output terminal is considered an electrical load.
Then the force of gravity between them would be quadrupled and so on but the gravitational force is inversely proportional to the square of the separation distance between the two interacting objects which makes more separation distance will result in weaker gravitational forces
The correct answer is :
<span>D If the radiation were to leak out of the reactors, it could cause significant damage to living organisms.
</span><span>
In fact, the ionizing radiation that leaks out from a nuclear reactor is able to modify the DNA of the cells of living organisms, causing mutations and/or diseases like cancer.</span>
Answer:
Well I'm going to go with A.
Explanation:
As per the question the mass of the boy is 40 kg.
The boy sits on a chair.
We are asked to calculate the force exerted by the boy on the chair at sea level.
The force exerted by boy on the chair while sitting on it is nothing else except the force of gravity of earth i.e the weight of the body .The direction of that force is vertically downward.
At sea level the acceleration due to gravity g = 9.8 m/s^2
Therefore, the weight of the boy [m is the mass of the body]
we have m = 40 kg.
Therefore, w = 40 kg ×9.8 m/s^2
=392 N kg m/s^2
= 392 N
392 is not an option but I'm guessing you can round down 2 .to option A. 390...?