<h2>Thus the force of friction is 235 N</h2>
Explanation:
When the bear was at the height of 14 m . Its potential energy = m g h
here m is the mass of bear , g is acceleration due to gravity and h is the height .
Thus P.E = 27 x 10 x 14 = 3780 J
The K.E of the bear just before hitting =
m v²
=
x 27 x ( 6.1 )² = 490 J
The force of friction f = P.E - K.E = 3290 J
Because the work done = Force x Distance
Thus frictional force =
= 235 N
Answer:
Hot water rises and cold water sinks is a model of thermal energy transfer by conduction.
Answer:
(a) W= 44N
(b)W= 31.65 N
Explanation:
Data
T=44 N : Maximum force that the rope can withstand without breaking
Newton's second law:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
(a) We apply the formula (1) at constant speed , then, a=0
W: heaviest fish that can be pulled up vertically
∑F = 0
T-W =0
W = T
W= 44N
(b) We apply the formula (1) , a= 1.26 m/s²
W: heaviest fish that can be pulled up vertically
W= m*g
m= W/g
g= 9.8 m/s² : acceleration due to gravity
∑F = 0
T-W = m*a
T= W+(W/g)*a
44=W*(1+1/9.8)* (1.26 )
44= W* 1.39
W= 44/1.39
W= 31.65 N
Answer:
20 N
Explanation:
By Newton's 2nd law,
The rate of change of momentum is directly proportional to the unbalance force applied on the object,
By that you can get the equation,
F = ma
= 5 × 4 = 20 N
Answer with Explanation:
We are given that
Distance,r=0.27 m
Tangential speed=v=0.49 m/s
a.Angular speed ,
Using the formula



Time period,
b.Amplitude,A=Distance of small eraser from the center of a turnable =0.27 m
c.Maximum speed,
d.Maximum acceleration=