Answer:
Sodium oxide is the product
Explanation:
4Na+O2->2Na2O
The number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
<h3>How to calculate number of moles?</h3>
The number of moles in the formula units of a substance is calculated by dividing the formula unit by Avogadro's number.
According to this question, 3.20 x 10² formula units are in calcium iodide. The number of moles is as follows:
no of moles = 3.20 x 10²² ÷ 6.02 × 10²³
no of moles = 0.53 × 10-¹
no of moles = 0.053 moles
Therefore, the number of moles in 3.20 x 10² formula units of calcium iodide is 0.053 moles.
Learn more about number of moles at: brainly.com/question/12513822
#SPJ6
The question is missing the data sets.
This is the complete question:
A single penny has a mass of 2.5 g. Abbie and James
each measure the mass of a penny multiple times. Which statement about
these data sets is true?
O Abbie's measurements are both more accurate
and more precise than James'.
O Abbie's measurements are more accurate,
but less precise, than James'.
O Abbie's measurements are more precise,
but less accurate, than James'.
O Abbie’s measurements are both less
accurate and less precise than James'.
Penny masses (g)
Abbie’s data
2.5, 2.4, 2.3, 2.4, 2.5, 2.6, 2.6
James’ data
2.4, 3.0, 3.3, 2.2, 2.9, 3.8, 2.9
Answer: first option, Abbie's measurements are both more accurate
and more precise than James'.
Explanation:
1) To answer this question, you first must understand the difference between precision and accuracy.
<span>Accuracy is how close the data are to the true or accepted value.
</span>
<span>Precision is how close are the data among them, this is the reproducibility of the values.</span>
Then, you can measure the accuracy by comparing the means (averages) with the actual mass of a penny 2.5 g.
And you measure the precision by comparing a measure of spread, as it can be the standard deviation.
2) These are the calculations:
Abbie’s data
Average: ∑ of the values / number of values
Average = [2.5 + 2.4 + 2.3 + 2.4 + 2.5 + 2.6 + 2.6 ] / 7 = 2.47 ≈ 2.5
Standard deviation: √ [ ∑ (x - mean)² / (n - 1) ] = 0.11
James’ data
Average = [2.4 + 3.0 + 3.3 + 2.2 + 2.9 + 3.8 + 2.9] / 7 = 2.56 ≈ 2.6
Standard deviation = 0.53
3) Conclusions:
1) The average of Abbie's data are closer to the accepted value 2.5g, so they are more accurate.
2) The standard deviation of Abbie's data is smaller than that of Jame's data, so the Abbie's data are more precise.
Answer:
Would you consider adding a sodium carbonate solution to a magnesium sulfate .
Explanation:
??