Answer:
15.75 m
Explanation:
First, let's look at the top brick by itself. In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick. So the edge of the top brick must be 10.5 m from the edge of the bottom brick.
Now let's look at both bricks as a combined mass. We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m. And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge. So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.
Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
It is an imaginary transformer which has no core loss, no ohmic resistance and no leakage flux. The ideal transformer has the following important characteristic. The resistance of their primary and secondary winding becomes zero. The core of the ideal transformer has infinite permeability.
Answer:
The average recoil force on the gun during that 0.40 s burst is 45 N.
Explanation:
Mass of each bullet, m = 7.5 g = 0.0075 kg
Speed of the bullet, v = 300 m/s
Time, t = 0.4 s
The change in momentum of an object is equal to impulse delivered. So,

For 8 shot burst, average recoil force on the gun is :

So, the average recoil force on the gun during that 0.40 s burst is 45 N.