Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it
Answer:
608kg
Explanation:
Formula : <u>Kinetic</u><u> </u><u>energy</u><u> </u>
½ ×mass x speed²
<u>47500</u>
½×12.5²
=608 Kg
Increase .... decrease .... presumably it's the "best shape" for a body which has been formed by the gravitational force
Answer:
The boat will be 74 .17 meters downstream by the time it reaches the shore.
Explanation:
Consider the vector diagrams for velocity and distance shown below.
converting 72 miles per hour to km/hr
we have 72 miles per hour 72 × 1.60934 = 115.83 km/hr
The velocity vectors form a right angled triangle, and can be solved using simple trigonometric laws


This is the vector angle with which the ship drifts away with respect to its northward direction.
<em>From the sketch of the displacement vectors, we can use trigonometric ratios to determine the distance the boat moves downstream.</em>
Let x be the distance the boat moves downstream.d



∴The boat will be 74 .17 meters downstream by the time it reaches the shore.
Answer:
<h3>The answer is option B</h3>
Explanation:
The wavelength of a wave can be found by using the formula

where
c is the speed of the wave
f is the frequency
From the question
c = 343 m/s
f = 466 Hz
We have

We have the final answer as
<h3>0.74 m</h3>
Hope this helps you