Answer:
lol i know - i was rushing -_-
he= male
her=female
One word with both is <u>heroin</u> but Im not 100% sure
Answer:
The vertical distance that the ski jumper fell is 417.45 m.
Explanation:
Given;
initial horizontal velocity of the jumper,
= 26 m/s
horizontal distance of the jumper, dx = 240 m
The time of the motion is given by;
dx = Vₓt
t = dx / Vₓ
t = 240 / 26
t = 9.23 s
The vertical distance traveled by the diver is given by;

initial vertical velocity,
, = 0

Therefore, the vertical distance that the ski jumper fell is 417.45 m.
To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
Answer:
my name is Deepika Pandey anion I am 9 years old my father name is Dinesh Pandey my name is and my sister name is sister name is a
Answer:
#include <iostream>
#include <vector>
using namespace std;
int main() {
const int NUM_GUESSES = 3;
vector<int> userGuesses(NUM_GUESSES);
int i = 0;
int uGuess = 0;
for(i = 0; i <= userGuesses.size() - 1; i++){
cin >> uGuess;
userGuesses.at(i) = uGuess;
}
cout << endl;
return 0;
}
Explanation:
First inbuilt library were imported. Then inside the main( ) function, 3 was assigned to NUM_GUESSES meaning the user is to guess 3 numbers. Next, a vector was defined with a size of NUM_GUESSES.
Then a for-loop is use to receive user guess via cin and each guess is assigned to the vector.