According to the secant-tangent theorem, we have the following expression:
Now, we solve for <em>x</em>.
Then, we use the quadratic formula:
Where a = 1, b = 6, and c = -315.
<h2>Hence, the answer is 15 because lengths can't be negative.</h2>
You can use the identity
cos(x)² +sin(x)² = 1
to find sin(x) from cos(x) or vice versa.
(1/4)² +sin(x)² = 1
sin(x)² = 1 - 1/16
sin(x) = ±(√15)/4
Then the tangent can be computed as the ratio of sine to cosine.
tan(x) = sin(x)/cos(x) = (±(√15)/4)/(1/4)
tan(x) = ±√15
There are two possible answers.
In the first quadrant:
sin(x) = (√15)/4
tan(x) = √15
In the fourth quadrant:
sin(x) = -(√15)/4
tan(x) = -√15
Answer:
89
Step-by-step explanation:
it is basically counting by 2s but rather by 20s.
20, 40,60,80
all you do is add a 9 at the end.
The height of the rocket is found in terms of the angle as
.. h/(3 mi) = tan(θ)
.. h = (3 mi)*tan(θ)
Then the rate of change of height (vertical velocity) is
.. h' = (3 mi)*sec(θ)^2*θ'
.. h' = (3 mi)*4*(1.5 rad/min)
.. h' = 18 mi/min
The rocket's velocity is 18 miles per minute at that moment.