Balanced chemical reaction: 2CH₄(g) ⇄ C₂H₂(g) + 3H₂(g).
1) In a chemical reaction, chemical equilibrium is the state in which both reactants (methane CH₄) and products (ethyne C₂H₂ and hydrogen H₂) are present in concentrations which have no further tendency to change with time.
2) At equilibrium, both the forward and reverse reactions are still occurring.
3) Reaction rates of the forward and backward reactions are equal and there are no changes in the concentrations of the reactants and products.
Answer:
O c. One that is answered through observation
I used process of elminations so
Explanation:
One that everyone agrees one doesnt mean it's accurate.
Only the one that scientists ask doesnt make sense
One that never changes and One that is answered through observation.... So C
Answer:
C) It will accelerate.
Explanation:
According to Newton’s second law of motion, when an object is acted on by an unbalanced force, it will accelerate.
An unbalanced force will change the speed or direction (or both) of an object. A change in speed and/or direction is acceleration.
A) is wrong. The object will stop moving only if there is a balanced force in the opposite direction.
B) is wrong. The object will decrease speed only if the unbalanced force has a component opposite to the direction of motion.
d) is wrong. The object will increase speed only if the unbalanced force has a component in the direction of motion.
Answer:
Hydrogen bonding occurs when a hydrogen atom is covalently bonded to an NN, OO, or FF atom.
A hydrogen atom acquires a partial positive charge when it is covalently bonded to an FF atom.
A hydrogen bond is possible with only certain hydrogen-containing compounds.
Explanation:
A hydrogen bond does not occur in all hydrogen containing compounds. Hydrogen bonds only occur in those compounds where hydrogen is bonded to a highly electronegative element such as fluorine, oxygen or nitrogen.
In a hydrogen bonded specie, hydrogen acquires a partial positive charge and the electronegative element acquires a partial negative charge which extends throughout the molecule.