Answer:

Explanation:
Mass of the helium gas filled inside the volume of balloon is given as




now total mass of balloon + helium inside balloon is given as


now we know that total weight of balloon + cargo = buoyancy force on the balloon
so we will have




Answer:
The value is 
Explanation:
From the question we are told that
The electric flux is 
Generally the net charge is mathematically represented as

Here
is the permetivity of free space with value

So

=> 
Based on the length of the Ethernet cable and the mass, the tension in the cable can be found to be 80 N.
<h3>How much tension is in the cable?</h3>
The tension in the cable can be found as:
= 4 x mass x length x frequency
Solving for the frequency is:
= 1 / (0.800 / 4)
= 1 / 0.20
= 5.0 Hz
The tension is therefore:
= 4 x 0.20 x 4.00 x 5
= 80N
Find out more on tension at brainly.com/question/14336853
#SPJ4
Answer:
<em>The statement is true</em>
Explanation:
<u>Energy Conversion
</u>
When an object starts to fall in free air, it speeds up as it falls. The force of gravity acting on the object causes energy to be transferred from its gravitational potential energy to its kinetic energy. We can safely say the height converts to speed and vice-versa. If no external forces act on the system, we can easily calculate heights and speeds by knowing the total mechanical energy (gravitational potential plus kinetic) is conserved.
Answer:

Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.