Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²
A. Upstream refers to the motion of the swimmer where he is against the current. The resultant speed of the swimmer is equal to the difference of the velocity or speed in still water and that of the river. The time it requires to cover the distance is calculated through the equation,
t = d / s
where t is time, d is distance, and s is speed. Substituting the known values,
t = 1000 m / (1.2 m/s - 0.5 m/s) = 1,428.57 seconds
(b) The time it requires for the swimmer to swim in still water,
t = 1000 m / (1.2 m/s) = 833.33 seconds
(c) Intuitively, it takes longer to cover the distance when there is current because the current will serve as resistance to the motion of the swimmer, partially moving it backwards instead of forward.
Answer: 71.72 days
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula: </u>
(1)
Where:
is the final amount of Iodine-131
is the initial amount of Iodine-131
is the time elapsed
is the half life of Iodine-131
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Finding
:
I think the answer would be A
Answer:
different temperatures
Explanation:
The independent variable would be <u>different temperatures</u>.
<u>The independent variable is the variable that is manipulated or varied in an experiment in order to see the effects it will produce on another variable</u> - the dependent variable. The values of the independent variable are directly inputted by the researcher and are not changed by any other variable throughout the experiment.
In the illustration, the effect of a variation in temperature is determined by counting the number of yeast cells. This showed that the manipulated variable is the temperature and hence, the independent variable.