The balanced equation is Mg + 2AgNO₃ ⟶ Mg(NO₃)₂ + 2Ag
Step 1. Write the <em>unbalanced equation
</em>
Mg + AgNO₃ ⟶ Mg(NO₃)₂ + Ag
Step 2. Start with the<em> most complicated-looking formula</em> [Mg(NO₃)₂] and balance its atoms.
Mg: Already balanced —1 atom each side.
N: We need 2 N on the left. Put a 2 in front of AgNO₃.
1Mg + 2AgNO₃ ⟶ 1Mg(NO₃)₂ + Ag
O: Already balanced —6 atom6 each side.
Step 3: Balance <em>Ag</em>
We have 2Ag on the left. We need 2Ag on the right.
1Mg + 2AgNO₃ ⟶ 1Mg(NO₃)₂ + 2Ag
Answer:
Explanation:
I think option d is correct
Answer: The final concentration when 5 ml of a 2.5M copper sulphate solution is diluted to 750 ml is 0.017 M
Explanation:
According to the dilution law,
where,
= molarity of stock
solution = 2.5 M
= volume of stock
solution = 5 ml
= molarity of diluted
solution = ?
= volume of diluted
solution = 750 ml
Putting in the values we get:
Therefore the final concentration when 5 ml of a 2.5M copper sulphate solution is diluted to 750 ml is 0.017 M
To begin with, the equation given is not correct.
Correct equation is : CaCO3 + HCl ---> CaCl2 + H2O + CO2
It's CaCl2 not CaCl because Ca has a valency of 2
LHS RHS
CaCO3 + HCl ---> CaCl2 + H2O + CO2
First of all, to balance the equation you must look at the number of atoms on each side of the equation.
we have 2 H on the RHS and 1 H on the LHS. So, we put a 2 on the LHS
CaCO3 + 2HCl ---> CaCl2 + H2O + CO2
Check for the LHS: 1 Ca, 1 C, 3 O, 2 H & 2 Cl on the LHS
Now check for the RHS: 1 Ca, 2 Cl, 2 H, 1 C & 3 O
Hope it helped!
Answer:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
Explanation:
Chemical equation:
Al + ZnCl₂ → Zn + AlCl₃
Balanced Chemical equation:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
This is the example of single displacement reaction. Al displace the zinc and form aluminium chloride and zinc metal.
There are two Al three zinc and six chlorine atoms on both side of equation so it is correctly balanced.
Thus it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.