Answer:
2.64 M
Explanation:
To find the molarity, you need to (1) convert grams to moles (via molar mass), then (2) convert mL to L, and then (3) calculate the molarity (via molarity ratio). The final answer should have 3 sig figs to match the sigs figs of the given values.
(Step 1)
Molar Mass (NH₄NO₃): 2(14.007 g/mol) + 4(1.008 g/mol) + 3(15.998 g/mol)
Molar Mass (NH₄NO₃): 80.04 g/mol
66.5 grams NH₄NO₃ 1 mole
--------------------------------- x ---------------------- = 0.831 moles NH₄NO₃
80.04 grams
(Step 2)
1,000 mL = 1 L
315 mL 1 L
-------------- x ------------------ = 0.315 L
1,000 mL
(Step 3)
Molarity = moles / volume
Molarity = 0.831 moles / 0.315 L
Molarity = 2.64 M
The answer is the 3rd one down I think
<h2>Answer:</h2><h3>The temperature of the gas: V</h3>
The temperature of gas is a variable quantity. It can be changed by changing energy or pressure of gas.
<h3>The amount of gas in the tube (in terms of mass and moles): C</h3>
It is a constant entity. As mass of gas once taken can not be changed by changing temperature, pressure etc.
<h3>The radius of the tube: C</h3>
The radius of tube cannot change at any rate.
<h3>The temperature of the gas (changed by the water surrounding it): V</h3>
It can be changed by changing the temperature of water surrounding it.
<h3>The type of gas: C</h3>
It can never be changed.
<h3>The pressure of the gas: V</h3>
It can be changed by simply changing temperature and volume of gas.
Hello!
If the reaction could be made to go faster B. The hill would be shorter.
The "hill" is called Activation Energy. It is the energy of the activated intermediate compound needed to complete the reaction. Catalysts are substances that don't intervene in the reaction which speed up the rate of a given reaction by lowering the Activation Energy giving alternate reaction pathways with lower-energy intermediates. If the reaction could be made to go faster with the use of a catalyst, then the Activation Energy would be lower and the "hill" would be shorter.
Have a nice day!
I need you to explain the question