Answer:
(B) II, IV.
hope this answer is helpful for u.
This problem is describing the state two gases have when separated and together as shown on the attached picture. First of all, diagram 1 shows how they are separated in two containers with apparently equal volumes, whereas diagram 2 shows the removal of the barrier so that they get mixed together.
In this case, we can analyze that each gas has its own pressure and due to the removal of the barrier, both pressure and volume undergo a change. Thus, we can infer that the final volume is doubled with respected to the initial one for each gas, causing the pressure of each gas to be halved and the total pressure the half of the added ones, in agreement to the Boyle's law (inversely proportional relationship between pressure and temperature).
Therefore, the correct choice is:
C. The partial pressure of each gas in the mixture is half its initial pressure; the final total pressure is half the sum of the initial pressures of the two gases.
Learn more:
The symbol %v/v means percent by volume. Assuming there is no volume effects when these substances are mixed, we calculate as follows:
% v/v = (25 mL ethanol / 25 mL + 150 mL ) x 100
%v/v = 14.29 mL ethanol / mL solution
Hope this answers the question.
Answer:
The total pressure of three gases is 837.56 mmHg.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
In this case, the total pressure can be calculated as:
PT= 2.67 mmHg + 45.69 mmHg + 789.6 mmHg
Solving:
PT= 837.56 mmHg
<em><u>The total pressure of three gases is 837.56 mmHg.</u></em>