Answer:
20,800
Step-by-step explanation:
No, when you give someone points for answering your question it takes them from you but when you give someone brainliest it doesn't take the ones you recieved already for some reason
Use the identity P(A ∪ B) = P(A)+P(B)-P(A ∩ B)
P(A)=0.50
P(B)=0.60
P(A ∪ B) = 0.30
=>
P(A ∪ B) = P(A)+P(B)-P(A ∩ B)
=(0.50+0.60)-0.30
=0.80
Answer:

Step-by-step explanation:
Let's follow up with the solution. Considering a triangle with the vertices
,
and
, have a look at the representation in the cartesian plan.
From this representation we can say that the area (A) of a triangle through the knowledge of <u>analytical geometry</u> is given by the determinant of the vertices divided by two, mathematically,

So, applying this knowledge we're going to have,

![\mathsf{A} \triangle = \dfrac{1}{2}\left[ \left.\begin{array}{ccc} 3 & -7 & 1 \\ 6 & 4 & 1 \\ -2& -3 & 1 \end{array} \right| \begin{array}{cc} 3 & -7 \\ 6 & 4 \\ -2 & -3 \end{array} \right]](https://tex.z-dn.net/?f=%20%5Cmathsf%7BA%7D%20%5Ctriangle%20%3D%20%20%5Cdfrac%7B1%7D%7B2%7D%5Cleft%5B%20%20%5Cleft.%5Cbegin%7Barray%7D%7Bccc%7D%20%20%203%20%26%20-7%20%26%201%20%5C%5C%206%20%26%20%204%20%26%201%20%5C%5C%20-2%26%20%20-3%20%26%201%20%5Cend%7Barray%7D%20%20%5Cright%7C%20%5Cbegin%7Barray%7D%7Bcc%7D%203%20%26%20-7%20%5C%5C%206%20%26%204%20%5C%5C%20-2%20%26%20-3%20%5Cend%7Barray%7D%20%5Cright%5D%20)


Hope you enjoy it, see ya!)
Mozambique, Maputo – Matola City – T-3
DavidJunior17
Answer:
The answer is 1,550
Step-by-step explanation:
First you find the area of the rectangle 1
Area = ab
=(21 in) (17in)
=357 sq in.
this will be the same for rectangle 3 = 357 sq. in.
next find the area of rectangle 2
area=ac
=(21 in) (11 in)
=231 sq in.
this will be the same for rectangle 4 = 231 sq. in.
next find the area of rectangle 5
area = bc
=(17 in) (11 in.)
=187 sq. in
this will be the same for rectangle 6 = 187 sq. in.
Next add all areas together
Total surface area = 2(ac) + 2(ab) + 2(bc)
= 2(231) sq in. + 2(357) sq in. + 2(187) sq. in
= 462 + 174+ 374
= 1550 sq. in