The magnitude of the electrical force between a pair of charged particles is 4 Times as much when the particles are moved half as far apart.
This can be easily understood by Columb's law,

which state's that the amount of electrical force experienced by two charged particles is inversely proportional to the square of the distance between them.
∴ 
Now, we know the new distance is half the original distance,


The electrical force of attraction or electrostatic force of attraction between two charged particles refers to the amount of attractive or repulsive force that exists between the two charges. This can be calculated by Columb's Law.
A charged particle in physics is a particle that has an electric charge. It might be an ion, such as a molecule or atom having an excess or shortage of electrons in comparison to protons. The same charge is thought to be shared by an electron, a proton, or another primary particle.
Learn more about electrical force here
brainly.com/question/2526815
#SPJ4
Answer:

Explanation:
According to coulombs law force between two charges is given by
here R is the distance between both the charges which is given as 25 cm
We have given force F =0.036 N
So
As
is constant which value is 


Answer:

Explanation:
We are given that
Atomic number=2
We have to find the total negative charge on the electrons in one mole of Helium.
We know that atomic number=Proton number
Proton number=Number of electrons=2
Number of electrons in Helium=2
1 mole of Helium=
atoms
We know that q=ne
Where n =Number of fundamental units
e=Charge on electron
1 e=
Using the formula

Total negative charge in 1 mole=
Hence, the total negative charge on the electrons in 1 mole of Helium=