1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
11

A rectangular plate is rotating with a constant angular speed about an axis that passes perpendicularly through one corner, as t

he drawing shows. The centripetal acceleration measured at corner A is n times as great as that measured at corner B. What is the ratio L1/L2 of the lengths of the sides of the rectangle when n = 2.30?
Physics
1 answer:
salantis [7]3 years ago
8 0

Answer:

2.07

Explanation:

Since you didn't supply the drawing, here is what I assumed:

A is the corner opposite the axis of rotation

B is one of the remaining two corners

L1 is the side between A & B

Centripetal acceleration is given by:

ac = v^2 / r = (v / r) * (v / r) * r…………1

Also angular speed is

w = v / r,………….2

Substituting (2) in (1) gives:

ac = (v / r) * (v / r) * r……….3

= (v / r)^2 * r

= w^2 * r

Therefore, the angular acceleration at A and at B are given by:

acA = w^2 * rA……..4

acB = w^2 * rB……..5

It is given that:

acA = n * acB…………6

Substituting (4) and (5) into (6) gives:

w^2 * rA = n * w^2 * rB ……….7==>

rA = n * rB……..8

In terms of the sides L1 and L2:

rA = sqrt (L1^2 + L2^2)…….9

and

rB = L2…………10

Considering (8):

n * L2 = sqrt (L1^2 + L2^2)………11

Squaring both sides:

n^2 * L2^2 = L1^2 + L2^2……….12

Dividing by L2^2:

n^2 = L1^2 / L2^2 + L2^2 / L2^2…….13

= (L1 / L2)^2 + 1 ==>

n^2 - 1 = (L1 / L2)^2 ………14==>

L1 / L2 = sqrt (n^2 - 1) ………15

= sqrt (2.30^2 - 1)

= 2.07. . . . . . <<<=== the value of the ratio L1 / L2 when n = 2.30

You might be interested in
A large rock of mass me materializes stationary at the orbit of Mercury and falls into the sun. Itf the Sun has a mass ms and ra
son4ous [18]

Answer:

The answer is v = \sqrt{2G\frac{M_s}{R^2}(R-r_s)}.

Explanation:

From the law of gravity,

F = G \frac{Mm}{r^2}

considering F as a conservative force, F = - \nabla U,

the general expression for gravitational potential energy is

U = -G \frac{Mm}{r},

where G is the gravitational constant, M and m are the mass of the attracting bodies, and r is the distance between their centers. The negative sign is because the force approaches zero for large distances, and we choose the zero of gravitational potential energy at an infinite distance away.

However, as the mass of the Sun is much greater than the mass of the rock, the gravitational acceleration is defined as

g = -G \frac{M}{r^2},

(the negative sign indicates that the force is an attractive force), and the potential energy between the rock and the Sun is

U = g M_e R,

which is actually the total energy of the system, because the rock materializes stationary at this point (there is no radial kinetic energy).

When the rock hits the surface of the Sun, almost all potential energy is converted to kinetic energy, but not all because the Sun is not a puntual mass. So the potential energy converted to kinetic energy is

U_p = g M_e(R- r_s),

then, the kinetik energy when the rock hits the surface is

U_k =\frac{1}{2}M_e v^2 = g M_e(R- r_s),

so

v = \sqrt{2g(R-r_s)}

where g is the gravitational acceleration generated by the Sun at R,

g = G \frac{M_s}{R^2}.

8 0
3 years ago
What is the equation for the potential energy stored in a spring when it is stretched or compressed?
gregori [183]

Answer:

if you stretch a spring with k = 2, with a force of 4N, the extension will be 2m. the work done by us here is 4x2=8J. in other words, the energy transferred to the spring is 8J. but, the stored energy in the spring equals 1/2x2x2^2=4J (which is half of the work done by us in stretching it).

8 0
3 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
3 years ago
What are two conductive materials separated by an insulator,and used to store electric potential energy?
jeka94
That's a not-bad description of a capacitor.
5 0
3 years ago
The average distance from Earth to the Moon is 384,000 km. How many days would it take, traveling at 800 km/h (the typical speed
Gala2k [10]

Answer:

20 days, 480 hours

4 0
2 years ago
Other questions:
  • On which factor does the inertia of rest depends​
    5·1 answer
  • In which scenario is elastic potential energy present?
    8·2 answers
  • A piano tuner uses a tuner to create a tone of 5.00 x 10² Hz. When a key on the piano is struck he hears 5 beats per second. Wha
    15·1 answer
  • The voltage across a conductor is increasing at a rate of 2 volts/min and the resistance is decreasing at a rate of 1 ohm/min. U
    7·1 answer
  • Please answer this I'm sorry for annoying you
    7·1 answer
  • You put a 3 kg block in the box, so the total mass is now 9 kg, and you launch this heavier box with an initial speed of 5 m/s.
    14·1 answer
  • A theory that stands the test of time and becomes the basis for a field of
    9·2 answers
  • How much heat is contained in 100 kg of water at 60.0 °C?
    5·1 answer
  • A ringing bell sends sound waves in all<br> directions<br> places<br> sides
    5·1 answer
  • A force of 10N is making an angle of 300 with the horizontal. Its horizontal components will be
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!