The area of the trapezoid can be calculated through the equation,
A = (b₁ + b₂)h / 2
where b₁ and b₂ are the bases and h is the height. Substituting the known values from the given,
A = (25mm + 32mm)(15 mm) / 2
A = 427.5 mm²
Since there are two trapezoids in the necklace, the area calculated is to be multiplied by two to get the total area.
total area = (427.5 mm²)(2)
<em>total area = 855 mm²</em>
1/7 = 2/14 =
<span>
<span>
<span>
0.1428571429
</span>
</span>
</span>
1/8 = 2/16 = 0.125
2/15 =
<span>
<span>
<span>
0.1333333333
</span>
</span>
</span>
So, 2/15 is between 1/7 and 1/8
(and there are an infinite amount of numbers between 1/7 and 1/8)
Answer: The mathematical expectation of Option A is 2.25. The mathematical expectation of Option B is 2.75. Option B offers a greater likelihood of advancing to the finish line.
Step-by-step explanation: I took the test.
Answer:
20
Step-by-step explanation:
This is a binomial distribution
n = 100; p = 1/5
E(x) = np = (100)(1/5) = 20
The region is in the first quadrant, and the axis are continuous lines, then x>=0 and y>=0
The region from x=0 to x=1 is below a dashed line that goes through the points:
P1=(0,2)=(x1,y1)→x1=0, y1=2
P2=(1,3)=(x2,y2)→x2=1, y2=3
We can find the equation of this line using the point-slope equation:
y-y1=m(x-x1)
m=(y2-y1)/(x2-x1)
m=(3-2)/(1-0)
m=1/1
m=1
y-2=1(x-0)
y-2=1(x)
y-2=x
y-2+2=x+2
y=x+2
The region is below this line, and the line is dashed, then the region from x=0 to x=1 is:
y<x+2 (Options A or B)
The region from x=2 to x=4 is below the line that goes through the points:
P2=(1,3)=(x2,y2)→x2=1, y2=3
P3=(4,0)=(x3,y3)→x3=4, y3=0
We can find the equation of this line using the point-slope equation:
y-y3=m(x-x3)
m=(y3-y2)/(x3-x2)
m=(0-3)/(4-1)
m=(-3)/3
m=-1
y-0=-1(x-4)
y=-x+4
The region is below this line, and the line is continuos, then the region from x=1 to x=4 is:
y<=-x+2 (Option B)
Answer: The system of inequalities would produce the region indicated on the graph is Option B