Nitrogen (around 78%), Oxygen (around 21%), and Argon (around 1%).
Hope this helps :)
If acetone has a density of 0.7857
the mass in grams of point A is 22.4 g and the volume at point B is 8.32 mL.
<h3>What is acetone?</h3>
Acetone is known as a chemical substance that is usually found in the environment but can also be produced artificially. Acetone is a polar organic product that interacts very well with water molecules, generating dipole-dipole relationships.It is colorless with a distinctive smell and taste, we find it in products known as <u>cleaning and personal care products</u>, but we can also use it as a solvent for substances.
Also in the environment in <u>plants, trees and in volcano emissions or in forest fires</u>, it does not become <em>toxic</em> in low doses but if it is exposed to an individual in high doses it can become <em>fatal</em>.
In the statement we can find that acetone has a density of 0.7857
.
Therefore, we can confirm that if acetone has a density of 0.7857
the mass in grams of point A is 22.4 g and the volume at point B is 8.32 mL.
To learn more about acetone visit: brainly.com/question/13334667?referrer=searchResults
#SPJ1
Answer: The element Na (Sodium) is getting oxidized and Hydrogen is getting reduced.
Explanation:
Oxidation reactions are the reactions in which addition of oxygen takes place.
Reduction reactions are the reactions in which loss of oxygen takes place.
For a given reaction:

Sodium is getting oxidized because there is an addition of reaction with that element.
Hydrogen is getting reduced because there is a removal of oxygen with that element.
Answer:
B
Explanation:
Pasted below is his 5 theory's and all of them are the building blocks of chemistry today.
1. Matter is made up of atoms that are indivisible and indestructible.
2. All atoms of an element are identical.
3. Atoms of different elements have different weights and different chemical properties.
4. Atoms of different elements combine in simple whole numbers to form compounds.
5. Atoms cannot be created or destroyed. When a compound decomposes, the atoms are recovered unchanged.
The solution would be like this for this specific problem:
Given:
pH of a 0.55 M hypobromous
acid (HBrO) at 25.0 °C = 4.48
[H+] = 10^-4.48 = 3.31 x
10^-5 M = [BrO-] <span>
Ka = (3.31 x 10^-5)^2 / 0.55 = 2 x 10^-9</span>
To add, Hypobromous Acid does not require acid
adjustment, which is necessary for chlorine-based product and is stable and
effective in pH ranges of 5-9.<span>
</span>Hypobromous Acid combines with organic
compounds to form a bromamine. Chlorine also combines with the same organic
compounds to form a chloramine. <span>It is also
one of the least expensive intervention antimicrobial compounds available.</span>