Answer:
a) 4.7 kΩ, +/- 5%
b) 2.0 MΩ, +/- 20%
Explanation:
a) If the resistor has the following combination of color bands:
1) Yellow = 1st digit = 4
2) Violet = 2nd digit = 7
3) Red = multiplier = 10e2
4) Gold = tolerance = +/- 5%
this means that the resistor has 4700 Ω (or 4.7 kΩ), with 5% tolerance.
b) Repeating the process for the following combination of color bands:
1) Red = 1st digit = 2
2) Black = 2nd digit = 0
3) Green = multiplier = 10e5
4) Nothing = tolerance = +/- 20%
This combination represents to a resistor of 2*10⁶ Ω (or 2.0 MΩ), with +/- 20% tolerance.
Sorry need points I'm new
Answer:
Temperature
Explanation:
In an ideal gas the specific enthalpy is exclusively a function of Temperature only this can be also written as h = h(T)
A gas is said be ideal gas if obeys PV= nRT law
And in a ideal gas both internal energy and specific enthalpy are a function of Temperature only. Therefore the constant volume and constant pressure specific heats Cv and Cp are also function of temperature only.
Answer: 383.22K
Explanation:
L = 3m, w = 1.5m
Area A = 3 x 1.5 = 4.5m2
Q' = 750W/m2 (heat from sun) ,
& = 0.87
Q = &Q' = 0. 87x750 = 652.5W/m2
E = QA = 652.5 x 4.5 = 2936.25W
T(sur) = 300K, T(panel) = ?
Using E = §€A(T^4(panel) - T^4(sur))
§ = Stefan constant = 5.7x10^-8
€ = emmisivity = 0.85
2936.25 = 5.7x10^-8 x 0.85 x 4.5 x (T^4(panel) - 300^4)
T(panel) = 383.22K
See image for further details.