Answer:
q₀ = 350,740.2885 N/m
Explanation:
Given

σ = 120 MPa = 120*10⁶ Pa

We can see the pic shown in order to understand the question.
We apply
∑MB = 0 (Counterclockwise is the positive rotation direction)
⇒ - Av*L + (q₀*L/2)*(L/3) = 0
⇒ Av = q₀*L/6 (↑)
Then, we apply

Then, we can get the maximum bending moment as follows

then we get

We get the inertia as follows

We use the formula
σ = M*y/I
⇒ M = σ*I/y
where

If M = Mmax, we have

The first one is d or the 4th answer choice and the second one is false. Hope this helps!
Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure