Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
<h3>
Answer: Choice A) 0-7</h3>
Explanation:
If the pH is between 0 and 7, then we have an acid.
If the pH is between 7 and 14, then we have an alkaline base.
If pH = 7, then it's neutral.
Reaction: 2K₍s₎ + 2H₂O₍l₎ → 2KOH₍aq₎ + H₂₍g₎.
K - potassium.
H₂O - water.
KOH - potassium-hydroxide.
H₂ - hydrogen.
s - solid phase.
l - liquid.
aq - disolves in water.
g - gas.
Reaction is exothermal (release of energy) and potassium burns a purple flame. H<span>ydrogen released during the reaction reacts with </span>oxygen<span> and ignites.</span><span>
</span>
Answer: definite proportions.
Explanation:
1) The definite proportions law states that compounds will always have the same kind of atoms (elements) in the same mass proportion (ratios).
2) For example, a molecule of water will alwys have the same mass ratio of hydrogen atoms to oxygen atoms. That is what permits to obtain the chemical formula of the water molecule as H₂O.
The mass of the two hydrogen atoms will be in a fixed ratio respect to the mass of the oxygen atoms.
Then, if you have one reactant in less proportion than the other, respect to the ratio stated by the chemical formula of water, the former will react completely (it is the limiting reactant) with the corresponding (proportional) mass of the later. Then there will be an excess of the later reactant which will not react (will remain unchanged).
The reactants can only react in the proportion defined by the chemical formulas of the final products.
Answer:
I think the answer is D a ray of violet light
Hope it helps!