It's a geometric sequence.
![4,-12,36,... \\ \\ a_1=4 \\ r=\frac{a_2}{a_1}=\frac{-12}{4}=-3 \\ \\ a_n=a_1 \times r^{n-1} \\ a_n=4 \times (-3)^{n-1} \\ a_n=4 \times (-3)^{-1} \times (-3)^n \\ a_n=4 \times (-\frac{1}{3}) \times (-3)^n \\ a_n=-\frac{4}{3}(-3)^n](https://tex.z-dn.net/?f=4%2C-12%2C36%2C...%20%5C%5C%20%5C%5C%0Aa_1%3D4%20%5C%5C%0Ar%3D%5Cfrac%7Ba_2%7D%7Ba_1%7D%3D%5Cfrac%7B-12%7D%7B4%7D%3D-3%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_n%3D4%20%5Ctimes%20%28-3%29%5E%7Bn-1%7D%20%5C%5C%0Aa_n%3D4%20%5Ctimes%20%28-3%29%5E%7B-1%7D%20%5Ctimes%20%28-3%29%5En%20%5C%5C%0Aa_n%3D4%20%5Ctimes%20%28-%5Cfrac%7B1%7D%7B3%7D%29%20%5Ctimes%20%28-3%29%5En%20%5C%5C%0Aa_n%3D-%5Cfrac%7B4%7D%7B3%7D%28-3%29%5En)
It's the sum for term 4 through term 15.
The answer would be 11x-12
We know that
Limacons are in the form
r=a(+-)b*sin (theta) or r=a(+-)b*cos (theta)
in this problem
r=a(+-)b*sin (theta)
so
is symmetric to y axis
a=1/2
b=1/2
a/b=1---------> Cardioid (hearth shaped)
see the attached figure
the answer is the option
<span>
A. Cardioid </span>
Answer:
1500
Step-by-step explanation:
deposit means put in and withdraw means take
Circumference = square root (Area * 4 * PI)
circumference = square root (
<span>
<span>
<span>
452.3893421169
</span>
</span>
</span>
* 4 * PI )
<span>circumference = square root (
5,684.8921350275)
</span>circumference =
<span>
<span>
<span>
75.3982236862
</span>
</span>
</span>