Gold is a chemical element with symbol Au (from Latin: aurum) and atomic number 79, making it one of the higher atomic number elements that occur naturally. In its purest form, it is a bright, slightly reddish yellow, dense, soft, malleable, and ductile metal.
Answer:
a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.
Explanation:
The heating curve is a curve that represents temperature (T) in the y-axis vs. added heat (Q) in the x-axis. The slope is T/Q = 1/C, where C is the heat capacity. Then, the higher the slope, the lower the heat capacity. For a constant mass, it can also represent the specific heat capacity (c).
Heats of vaporization and fusion cannot be calculated from these sections of the heating curve.
<em>Which statement below explains that?</em>
<em>a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.</em> YES.
<em>b. The specific heat capacity of the gaseous ethanol is greater than the specific heat capacity of liquid ethanol.</em> NO.
<em>c. The heat of vaporization of ethanol is less than the heat of fusion of ethanol.</em> NO.
<em>d. The heat of vaporization of ethanol is greater than the heat of fusion of ethanol.</em> NO.
Answer:
The halogens, nitrogen and sulphur are covalently bonded to the organic compounds. In order to detect them, the elements need to be converted into their ionic forms. This is done by fusing the organic compound with sodium metal. ... The extract is called sodium fusion extract or Lassaigne's extract.
Answer:
a solution: for example when sugar is dissolved in water it becomes a sugar solution
Answer is: the specific heat capacity of the metal is <span>A) 0.129 J/gK.
</span>m(metal) = 15,1 g.
Q = 48,75 J.
ΔT = 25 K.
Q = C · ΔT · m(metal).
C = Q ÷ ΔT · m(metal).
C = 48,75 J ÷ 25 K · 15,1 g.
C = 0,129 J/g·K.