The volume (in mL) of 0.242 M NaOH solution needed for the titration reaction is 39.44 mL
<h3>Balanced equation </h3>
CH₃CH₂COOH + NaOH —> CH₃CH₂COONa + H₂O
From the balanced equation above,
- The mole ratio of the acid, CH₃CH₂COOH (nA) = 1
- The mole ratio of the base, NaOH (nB) = 1
<h3>How to determine the volume of NaOH</h3>
- Volume of acid, CH₃CH₂COOH (Va) = 46.79 mL
- Molarity of acid, CH₃CH₂COOH (Ma) = 0.204 M
- Molarity of base, NaOH (Mb) = 0.242 M
- Volume of base, KOH (Vb) =?
MaVa / MbVb = nA / nB
(0.204 × 46.79) / (0.242 × Vb) = 1
Cross multiply
0.242 × Vb = 0.204 × 46.79
Divide both side by 0.242
Vb = (0.204 × 46.79) / 0.242
Vb = 39.44 mL
Thus, the volume of NaOH needed for the reaction is 39.44 mL
Learn more about titration:
brainly.com/question/14356286
Answer:
The answer is C. Organ systems please brainly me!
Explanation:
Answer:
a) 90 kg
b) 68.4 kg
c) 0 kg/L
Explanation:
Mass balance:
w is the mass flow
m is the mass of salt
v is the volume flow
C is the concentration
a) Initially: t=0
b) t=210 min (3.5 hr)
c) If time trends to infinity the division trends to 0 and, therefore, m trends to 0. So, the concentration at infinit time is 0 kg/L.
6 electrons... 's' can hold 2..... 'd' can hold 10 and 'f' can hold 14
Electron affinity for fluorine is than chlorine most likely , due to the electron repulsion that occur between the electron where n= 2 . the elements in the second period have such small electron clouds that electron repulsion is greater than that of the rest of the family.