7x³ = 28x is our equation. We want its solutions.
When you have x and different powers, set the whole thing equal to zero.
7x³ = 28x
7x³ - 28x = 0
Now notice there's a common x in both terms. Let's factor it out.
x (7x² - 28) = 0
As 7 is a factor of 7 and 28, it too can be factored out.
x (7) (x² - 4) = 0
We can further factor x² - 4. We want a pair of numbers that multiply to 4 and whose sum is zero. The pairs are 1 and 4, 2 and 2. If we add 2 and -2 we get zero.
x (7) (x - 2) (x + 2) = 0
Now we use the Zero Product Property - if some product multiplies to zero, so do its pieces.
x = 0 -----> so x = 0
7 = 0 -----> no solution
x - 2 = 0 ----> so x = 2 after adding 2 to both sides
x + 2 = 0 ---> so = x - 2 after subtracting 2 to both sides
Thus the solutions are x = 0, x = 2, x = -2.
Answer:
4/25 foot²
Step-by-step explanation:
Refer to attachment*
2 | <u>5</u><u>5</u><u>0</u><u>,</u><u>7</u><u>5</u><u>0</u><u>,</u><u>9</u><u>0</u><u>0</u>
2 | <u>2</u><u>7</u><u>5</u><u>,</u><u>3</u><u>7</u><u>5</u><u>,</u><u>4</u><u>5</u><u>0</u>
3 |<u> </u><u>2</u><u>7</u><u>5</u><u>,</u><u>3</u><u>7</u><u>5</u><u>,</u><u>2</u><u>2</u><u>5</u>
<u>3</u><u> </u>| <u>2</u><u>7</u><u>5</u><u>,</u><u>1</u><u>2</u><u>5</u><u>,</u><u>7</u><u>5</u>
5 | <u>2</u><u>7</u><u>5</u><u>,</u><u>1</u><u>2</u><u>5</u><u>,</u><u>2</u><u>5</u>
5 | <u>55,25,5</u>
5 | <u>1</u><u>1</u><u>,</u><u>5</u><u>,</u><u>5</u>
11 | <u>1</u><u>1</u><u>,</u><u>1</u><u>,</u><u>1</u>
LCM:-2×2×3×3×5×5×5×11=49500
Answer: i dont see a thing yur thing isnt
loading
Step-by-step explanation: