Answer:
Very certain it is C
Step-by-step explanation:
There are no points on the graph line itself so I cannot really confirm this but i am 70% sure
Step-by-step explanation:
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Since g(h(x))=h(g(x))= x, hence functions h and g are inverses of each other
Given the functions expressed as:

In order to check whether they are inverses of each other, we need to show that h(g(x)) = g(h(x))
Get the composite function h(g(x))

Get the composite function g(h(x))

Since g(h(x))=h(g(x))= x, hence functions h and g are inverses of each other
Learn more on inverse functions here; brainly.com/question/14391067
Answer:
Yes, Fiona is correct
Step-by-step explanation:
WHen the pythagorean theorem is applied to the side lengths (2^2 + 4^2 = c^2), the result for c^2 is 20. The correct answer would be sqrt.20. But Fiona is also correct becuase sqrt of 20 can be simplified to sqrt.4 * sqrt.5; which equals 2*sqrt.5
B + 1.1 = -11
Subtract 1.1 from both sides to get b.
So, b = -12.1