Answer:
What/where is the question you have for me?
Step-by-step explanation:
The solution to given system of equations is (x, y) = (2, -1)
<em><u>Solution:</u></em>
Given system of equations are:
-1x + 2y = -4 -------- eqn 1
4x + 3y = 5 ------- eqn 2
We can solve the above system of equations by elimination method
<em><u>Multiply eqn 1 by 4</u></em>
4(-1x + 2y = -4)
-4x + 8y = -16 ------ eqn 3
<em><u>Add eqn 2 and eqn 3</u></em>
4x + 3y = 5
-4x + 8y = -16
( + ) --------------------
0x + 11y = -16 + 5
11y = -11
y = -1
<em><u>Substitute y = -1 in eqn 1</u></em>
-1x + 2(-1) = -4
-x -2 = -4
-x = -4 + 2
-x = -2
x = 2
<em><u>Check the answer:</u></em>
Substitute x = 2 and y = -1 in eqn 2
4x + 3y = 5
4(2) + 3(-1) = 5
8 - 3 = 5
5 = 5
Thus the obtained answer is correct
Thus the solution to given system of equations is (x, y) = (2, -1)
We know that
the euclid's division A/B implies A= BQ + R
wher Q = the quotient, and R is the remainder
<span>after doing euclid's division, (3x^3+15x^2+17x+3)/x+5 = 3x²+17and R= - 82
so </span>(3x^3+15x^2+17x+3= (3x²+17) (x+5) -82
the answer is x^3+15x^2+17x+3= (3x²+17) (x+5) - 82
Explanation:
There may be a more direct way to do this, but here's one way. We make no claim that the statements used here are on your menu of statements.
<u>Statement</u> . . . . <u>Reason</u>
2. ∆ADB, ∆ACB are isosceles . . . . definition of isosceles triangle
3. AD ≅ BD
and ∠CAE ≅ ∠CBE . . . . definition of isosceles triangle
4. ∠CAE = ∠CAD +∠DAE
and ∠CBE = ∠CBD +∠DBE . . . . angle addition postulate
5. ∠CAD +∠DAE ≅ ∠CBD +∠DBE . . . . substitution property of equality
6. ∠CAD +∠DAE ≅ ∠CBD +∠DAE . . . . substitution property of equality
7. ∠CAD ≅ ∠CBD . . . . subtraction property of equality
8. ∆CAD ≅ ∆CBD . . . . SAS congruence postulate
9. ∠ACD ≅ ∠BCD . . . . CPCTC
10. DC bisects ∠ACB . . . . definition of angle bisector