Ouestion: Which of the following can serve as evidence to support the claim that human consumption of water impacts earths system?
Answer & Explanation: Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3), (MS-ESS3-4)
Hope this helps and comment down below if you need more information!
Fr0ggyLikeSMELLY
Answer:
1
Explanation:
one volume of nitrogen to react
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)
Answer:
C. 70%
Explanation:
Atomic Mass of the silicon = 28 g.
Atomic mass of the Carbon = 12 g.
Total mass of the Silicon Carbide = 28 + 12
= 40 g.
Now, Using the formula.
% Composition = Mass of the silicon/Total mass of the compound × 100 %
= 28/40 × 100 %
= 70 %
Hence, % composition of the silicon in SiC is 70%
C. Sulfuric acid is a strong oxidizing agent.