since the concentration of Carbon Dioxide will increase, it would make Q > K, cause equilibrium to shift in the direction with less moles of gas to alleviate the extra pressure. In this case, the reaction will shift left because there are fewer moles of gas present.
Both create energy. Both require atoms.
Fission is ripping the atoms apart, fusion is forcing them together. Fission takes less energy because it's easier to rip unstable atoms apart but pushing two atoms that have similar charges together is extremely hard. Fission is currently mainstream on earth, but fusion is known for taking place within stars.
Answer:
A) 2.69 M
B) 0.059
Explanation:
A) We have:
33.8% solute by mass= 33.8 g solute/100 g solution
molarity = mol solute/ 1 L solution
molarity=
x
x
x 
molarity= 2.69 mol solute/L solution = 2.69 M
B) We know that there are 33.8 g of solute in 100 g of solution.
As the total solution is compounded by solute+solvent (in this case, solvent is water), the mass of water is the difference between the mass of the total solution and the mass of solute:
mass of water= 100 g - 33.8 g = 66.2 g
Now, we calculate the number of mol of both solute and water:
mol solute= 33.8 g solute x
= 0.232 mol
mol H20= 66.2 g H₂O x 
Finally, the mol fraction of solute (Xsolute) is calculated as follows:
Xsolute=
Xsolute= 0.059
Answer:
Empirical CHO2
Molecular C2H2O4
Explanation:
To determine the formulas, firstly, we need to divide the percentage compositions by the atomic masses.
Kindly note that the atomic mass of carbon, oxygen and hydrogen are 12, 16 and 1 respectively. We proceed with the division as follows:
C = 26.7/12 = 2.225
H = 2.2/1 = 2.2
O = 71.1/16 = 4.44375
We then proceed to divide by the smallest value which is 2.2 in this case
C = 2.25/2.2 = 1
H = 2.2/2.2 = 1
O = 4.44375/2.2 = 2
Thus, the empirical formula is CHO2
We now proceed to get the molecular formula as follows
[12+ 1 + 16(2) ]n = 90.04
45n = 90.04
n = 90.04/45 = 2
The molecular formula is :
C2H2O4