The nulear charge is the number of protons.
As the number of protons increases, the nuclear charge grows ant thhe pulling electrostatic force between them and electrons also grows, given that the electrostatic force is proportional to the magnitude of the charges.
As the number of electrons grows, they occupy outer shelss (farther from the nucleus). And the outer electrons will feel not only the atraction of the protons from the nucleus, but the repulsion of the inner electrons.
Then, we see that the increase of nuclear charge is opposed by the increase of core electrons, and the outer (valence) electrons are not so tied to the nucleus as the core electrons are.
This is called shielding effect. A way to quantify the shielding effect is through the effective nuclear charge which is the number of protons (Z) less the number of core electrons.
The more the number of core shells the greater the shielding effect experience by electros in the outermost shells.
The shielding effect, explains why the valence eletrons are more easily removed from the atom than core electrons, and also explains some trends of the periodic table: variationof the size of the atoms in a row, the greater the shielding efect, the less the atraction force felt by the outermos electron, the farther they are and the larger the atom.
NaH(s)+ H2O (l)=>NaOH(aq)+H2(g)
You want to calculate the mass of NaH, I assume. Otherwise, the question isn't clear. It simply says calculate the mass(??)
So, calculate the moles of H2 gas that satisfy the conditions of 982 ml at 28ºC and 765 torr. But you must subtract the vapor pressure of water at 28º to get the actual pressure of the H2 gas. So, the actual conditions are 982 ml (0.982 L) and 301 K and 765-28 = 737 torr.
PV = nRT
n = PV/RT = (737 torr)(0.982 L)/(62.4 L-torr/Kmol)(301 K)
n = 0.0385 moles H2
moles NaH needed = 0.0385 moles H2 x 1 mole NaH/mole H2 = 0.0385 moles NaH required
mass of NaH needed = 0.0385 moles x 24 g/mole = 0.925 g NaH
Brainliest Please :)
Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>
Answer:
John Dalton's Atomic Model Below ⬇
Explanation: