T = days passed
r = rate of growth
by 0 day, or t = 0, there are 2 folks sick,

by the third day, t = 3, there are 40 folks sick,
![\bf \qquad \textit{Amount for Exponential Growth} \\\\ A=P(1 + r)^t\qquad \begin{cases} A=\textit{accumulated amount}\to &40\\ P=\textit{initial amount}\to &2\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\to &3\\ \end{cases} \\\\\\ 40=2(1+r)^3\implies 20=(1+r)^3\implies \sqrt[3]{20}=1+r \\\\\\ \sqrt[3]{20}-1=r\implies 1.7\approx r\qquad \boxed{A=2(2.7)^t}](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BAmount%20for%20Exponential%20Growth%7D%0A%5C%5C%5C%5C%0AA%3DP%281%20%2B%20r%29%5Et%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5Cto%20%2640%5C%5C%0AP%3D%5Ctextit%7Binitial%20amount%7D%5Cto%20%262%5C%5C%0Ar%3Drate%5Cto%20r%5C%25%5Cto%20%5Cfrac%7Br%7D%7B100%7D%5C%5C%0At%3D%5Ctextit%7Belapsed%20time%7D%5Cto%20%263%5C%5C%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A40%3D2%281%2Br%29%5E3%5Cimplies%2020%3D%281%2Br%29%5E3%5Cimplies%20%5Csqrt%5B3%5D%7B20%7D%3D1%2Br%0A%5C%5C%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B20%7D-1%3Dr%5Cimplies%201.7%5Capprox%20r%5Cqquad%20%5Cboxed%7BA%3D2%282.7%29%5Et%7D)
how many folks are there sick by t = 6?
Answer:
P = 0.3
Step-by-step explanation:
Here, we are to use the probability distribution in the table to calculate the probability that a children has 4 or more shoes in his or her closet
When we say 4 or more, what we mean by this is that the teenager has 4 shoes or 5 shoes
In probability expressions, when we use the term ‘or’ we are simply talking about adding the terms involved
So what we can do here is to add the probability that the teenager has 4 shoes to the probability that the teenager has five shoes
From the table that would be; 0.1 + 0.2 = 0.3
-5 because the denominator can’t equal zero
The third option is ordered least to greatest
X+x+54=180
2x+54=180
2x=126
x=63
63+54=117
one angle is 63, the other is 117