Answer:
ok what is the question you need help with
Explanation:
:)
Answer:
A-the energy of the wave decreases gradually
Explanation:
when a wave is acted upon by an external damping force the energy of the wave decreases gradually.
The energy degrades into the form of heat which is considered to be of less value and use. The reason is because it disperses and spreads more widely.
So therefore it end up as heat with a little sound but that is close to none because that too disperses into heat i.e. decreased form of energy.
Answer:

Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=


We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor

Capacitance of capacitor after moving plates


Potential difference between plates after moving








Hence, the charge on positive plate of capacitor=
A related type of beta decay actually decreases the atomic number of the nucleus when a proton becomes a neutron. Due to charge conservation, this type of beta decay involves the release of a charged particle called a “positron” that looks and acts like an electron but has a positive charge.
Answer:
μ = 0.309
Explanation:
coefficient of kinetic friction is defined as the ratio of two forces, friction force and the normal force acting on the object.
θ = arctan(15/100)= 8.531⁰
In the vertical direction:
N = mgcosθ = 100 *9.8 *cos(8.531) = 970N
law of conservation of energy implies
mgsinθ - μNx = 1/2m(v₂²-v₁²)
100*9.8*sin (8.531) - μ(970*2) = 1/2(100)(0²-3²)
150.6 - 1940μ = 450
- 1940μ = -600.6
μ = 0.309