The equation relevant to this is:
S(t) = So + Vot - At²/2 <span>
</span>
<span>Therefore
we can create two equations:
<span>S(t) = 90 = So - 4t - 16.1t² -->
eqtn 1</span>
<span>S(t+2) = 10 = So - 4(t+2) - 16.1(t+2)² --> eqtn 2</span>
</span>
<span>Expanding
eqtn 2:
10 = So - 4t - 8 - 16.1(t² + 4t + 4)
10 = So - 4t - 8 - 16.1t² - 64.4t - 64.4
10 + 8 + 64.4 = So - 68.4t - 16.1t²
<span>82.4 = So - 68.4t - 16.1t² -->
eqtn 3</span></span>
<span>
Subtracting eqtn 1 by eqtn 3:</span>
90 = So - 4t - 16.1t²
82.4 = So - 68.4t - 16.1t²
=> 7.6 = 64.4t
t = 0.118 s
Therefore calculating for initial height So:<span>
<span>82.4 = So - 68.4(0.118) - 16.1(0.118)²
<span>So = 90.7 ft</span></span></span>
Answer:
Boyle’s law and,Charles’s law
Explanation:
For a fixed mass of gas at constant pressure, the volume is directly proportional to the kelvin temperature. That means, for example, that if you double the kelvin temperature from, say to 300 K to 600 K, at constant pressure, the volume of a fixed mass of the gas will double as well.
C
Explanation:
This is because the other variables in the other choices are relative to different observers and hence are not good to use in an experiment because there will be a lot of inherent bias by the person conducting the experiment For example how one person views how strong or beautiful the maple or oak looks may be different from how another person perceives the same.
However, weight is an absolute SI unit and does not vary from experiment to experiment. It is, therefore, a non-biased variable to use in the experiment and determine which wood between oak and maple can hold more weight.
Answer:
Explanation:
F = qE
F is the force in Newtons
q is the test charge
E is the electrical field produced by the source charge
