Answer:
The induced current and the power dissipated through the resistor are 0.5 mA and
.
Explanation:
Given that,
Distance = 1.0 m
Resistance = 3.0 Ω
Speed = 35 m/s
Angle = 53°
Magnetic field 
(a). We need to calculate the induced emf
Using formula of emf

Where, B = magnetic field
l = length
v = velocity
Put the value into the formula


We need to calculate the induced current


Put the value into the formula


(b). We need to calculate the power dissipated through the resistor
Using formula of power

Put the value into the formula


Hence, The induced current and the power dissipated through the resistor are 0.5 mA and
.
Answer:
Electromagnetic induction
Explanation:
The process of generating electric current with a magnetic field. It occurs whenever a magnetic field and an electric conductor move relative to one another so the conductor crosses lines of force in the magnetic field.
There are correlation and causation between the force of the finger and the movement of the books
Answer:
a) 4.9*10^-6
b) 5.71*10^-15
Explanation:
Given
current, I = 3.8*10^-10A
Diameter, D = 2.5mm
n = 8.49*10^28
The equation for current density and speed drift is
J = I/A = (ne) Vd
A = πD²/4
A = π*0.0025²/4
A = π*6.25*10^-6/4
A = 4.9*10^-6
Now,
J = I/A
J = 3.8*10^-10/4.9*10^-6
J = 7.76*10^-5
Electron drift speed is
J = (ne) Vd
Vd = J/(ne)
Vd = 7.76*10^-5/(8.49*10^28)*(1.60*10^-19)
Vd = 7.76*10^-5/1.3584*10^10
Vd = 5.71*10^-15
Therefore, the current density and speed drift are 4.9*10^-6
And 5.71*10^-15 respectively