<u><em>Note: As you may have unintentionally missed to add the value choices. But, I would make sure to explain the concept so that you may improve your understanding in terms of solving these type of questions.</em></u>
Answer:
Any value other than the values
will not be a solution of
.
Step-by-step explanation:
Considering the equation

Steps to solve the equation









As
![\mathrm{For\:}x^3=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dx%5E3%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dx%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
![x=\sqrt[3]{\frac{1}{8}},\:x=\sqrt[3]{\frac{1}{8}}\frac{-1+\sqrt{3}i}{2},\:x=\sqrt[3]{\frac{1}{8}}\frac{-1-\sqrt{3}i}{2}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B8%7D%7D%2C%5C%3Ax%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3Ax%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B1%7D%7B8%7D%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D)
So,

Therefore,
Any value other than the values
will not be a solution of
.
Keywords: solution, value
Learn more about equation solution from brainly.com/question/1679491
#learnwithBrainly
Answer:
domain = all real numbers
Step-by-step explanation:
domain is the x axis
its asking what it goes to but if they have arrows then forever
Answer:
5/6 and 7/9
Step-by-step explanation:
A and D are less than 2/3 so B and C is correct.
Hope this helps plz mark brainliest :D
(-5,6) (-5,-6) (4,-6)
I hope it helps you!!
The first and crucial thing we want to take notice is that the lines DF and EG intersect at point H which creates 4 different triangles in the rhombus. The innermost angles of DGH and EFH are vertical angles and vertical angles are congruent. So if the angles of the triangles are congruent than the triangles themselves are congruent. This is supported by the vertical angles theorem.