Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
You may tell when a solution os formed when the item or particle, such as sugar or salt,
dissolves completely in the solvent, such as water.
Basically, you know when a solution is formed when the material you have placed in the solvent disappears :P
Answer:
C. Yes, because they have a definite composition.
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Your answer is B and the element is Carbon
So what your looking for is matching isotopes. Isotopes are elements that are the same in amount of protons but different in mass meaning different number in neutrons. Because when you add the total protons and neutrons together you get your atomic mass. So this can be written as X=said element, top number above=different atomic mass, bottom number below=atomic number. Hope this help!!
Be careful because answer A has same masses but different atomic numbers so different atoms(elements)!!!
Answer:
The empirical formula for the compound is C3H4O3
Explanation:
The following data were obtained from the question:
Carbon (C) = 40.92%
Hydrogen (H) = 4.58%
Oxygen (O) = 54.50%
The empirical formula for the compound can be obtained as follow:
C = 40.92%
H = 4.58%
O = 54.50%
Divide by their molar mass
C = 40.92/12 = 3.41
H = 4.58/1 = 4.58
O = 54.50/16 = 3.41
Divide by the smallest i.e 3.41
C = 3.41/3.41 = 1
H = 4.58/3.41 = 1.3
O = 3.41/3.41 = 1
Multiply through by 3 to express in whole number
C = 1 x 3 = 3
H = 1.3 x 3 = 4
O = 1 x 3 = 3
The empirical formula for the compound is C3H4O3