Answer:
Mass of H₂O is 3.0g
Explanation:
The reaction equation is given as:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Parameters that are known:
Mass of CO₂ used = 7.3g
Unknown: mass of water consumed = ?
Solution
To solve this kind of problem, we simply apply some mole concept relationships.
- First, we work from the known to the unknown. From the problem, we have 7.3g of CO₂ that was used. We can find the number of moles from this value using the expression below:
Number of moles of CO₂ = 
- From this number of moles of CO₂, we can use the balanced equation to relate the number of moles of CO₂ to that of H₂O:
6 moles of CO₂ reacted with 6 moles of H₂O(1:1)
- We can then use the mole relationship with mass to find the unknown.
Workings
>>>> Number of moles of CO₂ =?
Molar mass of CO₂ :
Atomic mass of C = 12g
Atomic mass of O = 16g
Molar mass of CO₂ = 12 + (2 x16) = 44gmol⁻¹
Number of moles of CO₂ =
= 0.166moles
>>>>>> if 6 moles of CO₂ reacted with 6 moles of H₂O, then 0.166moles of CO₂ would produce 0.166moles of H₂O
>>>>>> Mass of water consumed = number of mole of H₂O x molar mass
Mass of H₂0 = 0.166 x ?
Molar mass of H₂O:
Atomic mass of H = 1g
Atomic mass of O = 16
Molar mass of H₂O = (2x1) + 16 = 18gmol⁻¹
Mass of H₂O = 0.166 x 18 = 3.0g
D:friction
Reason:because they are trying different types of things to rub against it and see if it will slow it down
Please give me the bran list answer !
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
<span>The equation that produces carbon disulfide from the reaction of coke and sufur dioxide is expressed in the balanced equation: c+ 2sO2 = CS2 + 2O2. For every mole of coke reacted, there is one mole of carbon disulfide produced. Hence the answer here is 8 moles of CS2 </span>
Answer:
21 g/mL
Explanation:
To solve this problem, first look at the density equation, which is D=M/V, which D stands for density, M stands for mass, and V stands for volume. When you substitute in the variables, you get D=17.5/.82, which is equivalent to 21.34. However, since we need to pay attention to the sig fig rules for multiplying, we need to have the same amount of sig figs as the value with the least amount of sig figs, which is the number .82. .82 has two sig figs, so you round down. Your answer will be 21 g/mL.