Answer:
Equilibrium constant Kc for the reaction will be 1.722
Explanation:
O2(g)+NO(g)→CO(g)+ NO2(g)
0.88 3.9 --- ---
0.88x 3.9-x x x
GIVEN:
0.88X-X= 0.11
⇒ X=0.77
CO2(g)+NO(g) → CO(g) + NO2(g)
0.88 3.9 --- ---
0.88-x 3.9-x x x
= 3.13 0.77 0.77
=0.11
Kc = ![\frac{[CO] *[NO2]} {[CO2]*[NO]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO%5D%20%2A%5BNO2%5D%7D%20%7B%5BCO2%5D%2A%5BNO%5D%7D%20)
=
= 1.722
1) T
2) F- the heart pumps blood
3) T
4) F- atria and ventricles
5) T
6) T
7) T
8) T
9) F- your heart rate goes down but doesn't stop
10) T
1) D
2) B
3) A
4) E
5)C
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
<span>Mixing magnesium and aluminum together produces an excellent lightweight material from which to make airplane parts. This type of mixture is called an alloy.
Alloy is a mixture of two elements, one of which is a metal.
</span>
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.