Answer:
42.6 m
Explanation:
mass of crate m = 53 kg
coefficient of kinetic friction, μ = 0.36
acceleration due to gravity, g = 9.8 m/s^2
Force, F = 372.098 N
Net force, f = F - friction force
f = 372.098 - μ m x g = 372.098 - 0.36 x 53 x 9.8
f = 185.114 N
acceleration, a = f / m = 185.114 / 53 = 3.49 m/s^2
initial velocity, u = 0
time, t = 4.94 s
s = ut + 1/2 at^2
s = 0 + 1/2 x 3.49 x 4.94 x 4.94
s = 42.6 m
Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.
By absorbing solar radiation and releasing heat needed to drive the atmospheric circulation
The formula is P = E/t, where P means power in watts, E means energy j , and t means time in seconds. This formula states that power is the consumption of energy per unit of time.
P = 15 M / 10*60
M = mega = 10⁶
15 *10⁶ / 600
= 25000 watt
Explanation:
It is given that,
Relativistic Mass of the stone, m₀ = 0.6
Mass, 
Relativistic mass is given by :
.........(1)
Where
c is the speed of light
On rearranging equation (1) we get :



v = 0.61378 c
or
v = 0.6138 c
So, the correct option is (c). Hence, this is the required solution.