1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
3 years ago
10

light waves are first transmitted through the ________ at the front of the eye and enter an opening called the ________ before s

hining onto the retina.
Physics
1 answer:
viva [34]3 years ago
8 0

The transmission of light waves is usually done through cornea of the eyes, then move through another opening which is regarded as pupil before it will get to the retina.

  • Light waves can be regarded as moving energy which contains microscopic particles known as photons.
  • The vision of the eye can be completed through the light wave passing through the components of the eyes and this process goes thus;
  • Light will move through the (cornea) which is situated at the front area of the eyes into lens.
  • Then both the cornea and the lens give room for the focusing of the light rays to the retina which is situated at the back of the eye .
  • Then through the help of the cells in the retina, the light will be absorbed and then be converted to  electrochemical impulses and then transfer it to the brain as well as optic nerve.

Therefore, light wave are form of tiny microscopic particles.

brainly.com/question/19734585?referrer=searchResults

You might be interested in
Please help me. i have 2 hours
mestny [16]

the missing word is clockwise moment. I hope this helps good luck

7 0
3 years ago
The op amp in this circuit is ideal. R3 has a maximum value of 100 kΩ and σ is restricted to the range of 0.2 ≤ σ ≤ 1.0. a. Calc
Firlakuza [10]

I have attached the circuit image missing in the question.

Answer:

A) The range of vo is; -6.6V≤ vo ≤-1V

B) σ = 0.1861

Explanation:

A) First of all, Let VΔ be the voltage from the potentiometer contact to the ground.

Thus; [(0 - vg)/(2000)] +[(0 - vΔ)/(50,000)] = 0

So, [(- vg)/(2000)] +[(- vΔ)/(50,000)] = 0

Simplifying further; -25 vg - vΔ = 0

From the question, vg = 40mV = 0.04 V

So - 25(0.04) = vΔ

So: vΔ = - 1 V

Now, [vΔ/(σRΔ)] + [(vΔ - 0)/(50,000)] + [(vΔ - vo)/((1 - σ)RΔ))] = 0

So, multiplying each term by RΔ to get; [vΔ/(σ)] + [(vΔ x RΔ)/(50,000)] + [(vΔ - vo)/((1 - σ))] = 0

So RΔ = 100kΩ or 100,000Ω from the question.

So, substituting for RΔ, we get,

[vΔ/(σ)] + [2vΔ] + [(vΔ - vo)/((1 - σ))] = 0

Let's put the value of - 1 for vΔ as gotten before.

So, ( - 1/σ) - 2 + [(-1 - vo)/(1 - σ)] = 0

Now let's make vo the subject of the equation to get;

-1 - vo = (1 - σ)[2 + (1/σ)]

-1 - vo = 2 - 2σ + (1/σ) - 1

-vo = 1 + 2 - 2σ + (1/σ) - 1

-vo = 2 - 2σ + (1/σ)

vo = - 1 (2 - 2σ + (1/σ))

When σ = 0.2; vo = - 1(2 - 0.4 + 5) =

- 1 x 6.6 = - 6.6V

Also when σ = 1;

vo = - 1(2 - 2 + 1) = - 1V

Therefore, the range of vo is;

- 6.6V ≤ vo ≤ - 1V

B) it will saturate at vo = - 7V

So, from;

vo = - 1 (2 - 2σ + (1/σ))

-7 = - 1 (2 - 2σ + (1/σ))

Divide both sides by (-1)

7 = (2 - 2σ + (1/σ))

Now, subtract 2 from both sides to get; 5 = - 2σ + (1/σ)

Multiply each term by α to get;

5σ = - 2σ^(2) + 1

So 2σ^(2) + 5σ - 1 = 0

Solving simultaneously and picking the positive value , we get σ to be approximately 0.1861

8 0
4 years ago
2. (1) A piece of rubber is 50 cm long when a weight of
Harrizon [31]

Answer

By F = -kx {-ve just indicating the sign of the force}

=>35 = k x (85-50) x 10^-2

=>k = 100 N/m

Again by F = -kx

8 0
3 years ago
WHY ARE ALL GIRLS THE SAME, don't even say their not cause if you say that then I guess you don't have a life!!!!!​
Zinaida [17]
Because they are. it’s just how life works
6 0
3 years ago
One object (m1 = 0.220 kg) is moving to the right with a speed of 2.10 m/s when it is struck from behind by another object (m2 =
blagie [28]

Answer:

vf₁  = 6.86 m/s , to the right

vf₂ =  2.96 m/s, to the right

Explanation:

Theory of collisions  

Linear momentum is a vector magnitude (same direction of the velocity) and its magnitude is calculated like this:  

p=m*v  

where  

p:Linear momentum  

m: mass  

v:velocity  

There are 3 cases of collisions : elastic, inelastic and plastic.  

For the three cases the total linear momentum quantity is conserved:  

P₀ = Pf Formula (1)  

P₀ :Initial linear momentum quantity  

Pf : Final linear momentum quantity  

Data

m₁= 0.220 kg : mass of  object₁

m₂= 0.345 kg : mass of  object₂

v₀₁ =  2.1 m/s ₁ , to the right : initial velocity of m₁

v₀₂=   6 m/s, to the right  i :initial velocity of m₂

Problem development

We appy the formula (1):

P₀ = Pf  

m₁*v₀₁ + m₂*v₀₂ = m₁*vf₁ + m₂*vf₂  

We assume that the two objects move to the right at the end of the collision, so, the sign of the final speeds is positive:

(0.22)*(2.1) + (0.345)*(6) = (0.22)*vf₁ +(0.345)*vf₂

2.532 = (0.22)*vf₁ +(0.345)*vf₂ Equation (1)

Because the shock is elastic, the coefficient of elastic restitution (e) is equal to 1.

e= \frac{v_{f2}-v_{f1} }{v_{o1} -v_{o2} }

1*(v₀₁ - v₀₂ )  = (vf₂ -vf₁)

(2.1 - 6 )  = (vf₂ -vf₁)

-3.9 =  (vf₂ -vf₁)

vf₂ = vf₁ - 3.9

vf₂ = vf₁ - 3.9 Equation (2)

We replace Equation (2) in the Equation (1)

2.532 = (0.22)*vf₁ +(0.345)*( vf₁ - 3.9)

2.532 = (0.22)*vf₁ +(0.345)* (vf₁) -(0.345)( 3.9)

2.532 + 1.3455 = (0.565)*vf₁

3.8775 = (0.565)*vf₁

vf₁  = (3.8775) / (0.565)

vf₁  = 6.86 m/s, to the right

We replace vf₁  = 6.86 m/s in the Equation (2)

vf₂ =  6.86 - 3.9

vf₂ =  2.96 m/s, to the right

8 0
3 years ago
Other questions:
  • Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal po
    10·1 answer
  • a golfer tees off and hits a golf ball at a speed of 31 m/s and an angle of 35 degrees. how far did the ball travel before hitti
    14·1 answer
  • An ionic bond form when atoms
    5·1 answer
  • When energy is transferred from the air to the water, what happens to most of the energy?
    12·2 answers
  • 2 Points
    12·1 answer
  • a student compared two samples of matter he recorded the results in this chart which property do the two samples have in common
    7·1 answer
  • A student mixes two substances in a large beaker. After two hours, the student sees that the substances have separated again.
    7·1 answer
  • What are some common positive and negative attitudes toward physical activities? What
    11·1 answer
  • This table shows data collected by three devices: a thermometer on a weather balloon, a surface thermometer, and a barometer.
    5·1 answer
  • Pls help me solve these questions.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!