1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
docker41 [41]
4 years ago
13

A 20-cm long solenoid consists of 100 turns of a coil of radius r = 3.0 cm. A current of Io in the coiled wire produces a magnet

ic field of Bo in the middle of the solenoid. If we wish to produce a field that is 4-times larger, which of the following changes could work?
i) cut the radius of the coil to one-half
ii) quadruple the number of turns in the 20-cm long solenoid
iii) half the length of the 100-turn solenoid but maintain 100 turns across that length.
iv) quadruple the length of the 100-turn solenoid, but also double the radius of the coil.
v) half the length of the solenoid, and double the number of turns to 200 total turns
vi) double the current in the wire, and double the number of turns in the 20-cm long solenoid
Physics
2 answers:
Romashka-Z-Leto [24]4 years ago
3 0

Answer:

vi) Double the current in the wire, and double the number of turns in the 20-cm long solenoid

Explanation:

The magnetic field inside the solenoid and the current flowing in the coil of solenoid are related to each other by the following equation

B₀=μ₀nI₀

Where,

B₀ is the magnetic field in the middle of solenoid

n is the number of turns in the coil of solenoid

I₀ is the current flowing in the coil of solenoid

In the above equation, as μ₀ is a constant so the magnetic field will be directly proportional to the number of turns multiplied by the current. So, changing the radius of the coil or length of the coil will have no effect on the magnetic field.

As we have to increase the magnetic field by 4 times, we need to double the current as well as the number of turns as mentioned in the option vi.

Ede4ka [16]4 years ago
3 0

Answer:

Quadruple the number of turns in the 20-cm long solenoid

Double the current in the wire, and double the number of turns in the 20-cm long solenoid

Quadruple the length of the 100-turn solenoid, but also double the radius of the coil.

Explanation:

The expression for the magnetic field in the middle of the solenoid is as follows;

B_{0}=\frac{\mu NI_{0}}{L}                                                   ........ (1)

Here, B_{0} is the magnetic field in the middle of the solenoid, \mu is the magnetic permeability, I_{0} is the current, N is the number of turns and L is the length of the solenoid.

According to the given problem, if we wish to produce a field that is 4-times larger,

Consider the option (i) by using equation (1).

r is not present in the option. There will be no change in the magnetic field Therefore, the option (i) won't wrong.

Consider the option (ii) by using equation (1).

B'_{0}=\frac{\mu(4N)I_{0}}{L}

Divide this expression by the equation (1) by putting N= 4N.

B'_{0}=4B_{0

Therefore, the option (ii) will work.

Consider the option (iii) by using equation (1).

B'_{0}=\frac{\mu NI_{0}}{L'}  

Divide this expression by the equation (1) by putting L'=\frac{L}{2}.

B'_{0}=2B_{0

Therefore, the option (iii) won't work.

Consider the option (iv) by using equation (1).

B_{0}=\frac{\mu NI_{0}}{L'}  

Divide this expression by the equation (1) by putting L'=\frac{L}{4}.

B'_{0}=4B_{0

Therefore, the option (iv) will work.

Consider the option (v) by using equation (1).

B'_{0}=\frac{\mu NI_{0}}{L}  

Divide this expression by the equation (1) by putting L'=\frac{L}{2} and N=2N.

B'_{0}=8B_{0

Therefore, the option (v) won't work.

Consider the option (vi) by using equation (1).

B_{0}=\frac{\mu N'I'_{0}}{L}  

Divide the above expression by the equation (1) by putting I'_{0}=2I_{0}  and N=2N .

B'_{0}=4B_{0

Therefore, the option (vi) will work.

Therefore, the options (ii),(iv) and (vi) will work.

You might be interested in
A very small object with mass 8.30×10-9 kg and positive charge 6.90×10-9 C is projected directly toward a very large insulating
Rainbow [258]

Answer:

41.4496148484\ m/s

Explanation:

\epsilon_0 = Permittivity of free space = 8.85\times 10^{-12}\ F/m

\sigma = Surface charge density = 5.9\times 10^{-8}\ C/m^2

\Delta x = 0.57-0.26

q = Charge = 6.9\times 10^{-9}\ C

m = Mass of object = 8.3\times 10^{-9}\ kg

Electric field due to a sheet is given by

E=\dfrac{\sigma}{2\epsilon_0}\\\Rightarrow E=\dfrac{5.9\times 10^{-8}}{2\times 8.85\times 10^{-12}}\\\Rightarrow E=3333.33\ V/m

Electric field is given by

E=\dfrac{V}{d}

Voltage is given by

V=E\Delta x

Kinetic energy is given by

K=qV

\dfrac{1}{2}mv^2=qE\Delta x\\\Rightarrow v=\sqrt{\dfrac{2qE\Delta x}{m}}\\\Rightarrow v=\sqrt{\dfrac{2\times 6.9\times 10^{-9}\times 3333.33\times (0.57-0.26)}{8.3\times 10^{-9}}}\\\Rightarrow v=41.4496148484\ m/s

The initial speed of the object is 41.4496148484\ m/s

7 0
3 years ago
So far, you’ve been working with an "ideal" pulley system. How do you think real pulley systems are different, and how would tha
almond37 [142]

Answer:

In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component

However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy

Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system

The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Efficiency \, \% = \dfrac{AMA}{IMA}  \times 100

Explanation:

8 0
3 years ago
Scientists use laser range-finding to measure the distance to the moon with great accuracy. A brief laser pulse is fired at the
Fofino [41]

Answer:

d = 2,042 10-3 m

Explanation:

The laser diffracts in the circular slit, so the process equation is

      d sin θ= m λ

The first diffraction minimum occurs for m = 1

We can use trigonometry in the mirror

        tan θ = Y / L

Where L is the distance from the Moon to Earth

Since the angle is extremely small

           tan θ = sin θ / cos θ

           Cos θ = 1

           tant θ = sin θ = y / L

We replace

           d y / L = λ

           d = λ L / y

Let's calculate

           d = 532 10⁻⁹ 3.84 10⁶/1 10³

           d = 2,042 10-3 m

5 0
3 years ago
If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find w
Ira Lisetskai [31]

Answer:

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

Explanation:

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

If we want to reach the planet PSR B1620-26 b, explain why we will need to make some big “wrinkle in time” discoveries or find ways to live much, much longer?

5 0
2 years ago
Read 2 more answers
3) Principles of rectilinear proportion of light 9​
8_murik_8 [283]

Answer:Principle of rectilinear propagation of light

Explanation:Principle of rectilinear propagation of light

Rectilinear propagation of light refers to the propensity of light to travel along a straight line without any interference in its trajectory. ... It is because light travels along a straight line and leaves only the areas where the object interferes.

7 0
2 years ago
Other questions:
  • A 0.60-kg object is suspended from the ceiling at the end of a 2.0-m string. When pulled to the side and released, it has a spee
    8·1 answer
  • What is good deductive reasoning called
    11·1 answer
  • Find the force needed to accelerate a .3 kg bullet at 2100 m / s / s.
    8·1 answer
  • Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
    9·1 answer
  • A 7.5 kg block is placed on a table. if it's bottom surface area is 0.6m2, how much pressure does the block exert on the tableto
    11·1 answer
  • A proton (mass m 1.67 10 27 kg) is being accelerated along a straight line at 3.6 1015 m/s2 in a machine. If the proton has an i
    11·1 answer
  • Why is a decrease in Earth’s ozone harmful to life?
    6·1 answer
  • Physics please help !!
    5·1 answer
  • Which of the following is a circuit component whose function includes changing an open circuit to a closed circuit?
    13·2 answers
  • Please help me! It’s due soon! Please help!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!