1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
docker41 [41]
3 years ago
13

A 20-cm long solenoid consists of 100 turns of a coil of radius r = 3.0 cm. A current of Io in the coiled wire produces a magnet

ic field of Bo in the middle of the solenoid. If we wish to produce a field that is 4-times larger, which of the following changes could work?
i) cut the radius of the coil to one-half
ii) quadruple the number of turns in the 20-cm long solenoid
iii) half the length of the 100-turn solenoid but maintain 100 turns across that length.
iv) quadruple the length of the 100-turn solenoid, but also double the radius of the coil.
v) half the length of the solenoid, and double the number of turns to 200 total turns
vi) double the current in the wire, and double the number of turns in the 20-cm long solenoid
Physics
2 answers:
Romashka-Z-Leto [24]3 years ago
3 0

Answer:

vi) Double the current in the wire, and double the number of turns in the 20-cm long solenoid

Explanation:

The magnetic field inside the solenoid and the current flowing in the coil of solenoid are related to each other by the following equation

B₀=μ₀nI₀

Where,

B₀ is the magnetic field in the middle of solenoid

n is the number of turns in the coil of solenoid

I₀ is the current flowing in the coil of solenoid

In the above equation, as μ₀ is a constant so the magnetic field will be directly proportional to the number of turns multiplied by the current. So, changing the radius of the coil or length of the coil will have no effect on the magnetic field.

As we have to increase the magnetic field by 4 times, we need to double the current as well as the number of turns as mentioned in the option vi.

Ede4ka [16]3 years ago
3 0

Answer:

Quadruple the number of turns in the 20-cm long solenoid

Double the current in the wire, and double the number of turns in the 20-cm long solenoid

Quadruple the length of the 100-turn solenoid, but also double the radius of the coil.

Explanation:

The expression for the magnetic field in the middle of the solenoid is as follows;

B_{0}=\frac{\mu NI_{0}}{L}                                                   ........ (1)

Here, B_{0} is the magnetic field in the middle of the solenoid, \mu is the magnetic permeability, I_{0} is the current, N is the number of turns and L is the length of the solenoid.

According to the given problem, if we wish to produce a field that is 4-times larger,

Consider the option (i) by using equation (1).

r is not present in the option. There will be no change in the magnetic field Therefore, the option (i) won't wrong.

Consider the option (ii) by using equation (1).

B'_{0}=\frac{\mu(4N)I_{0}}{L}

Divide this expression by the equation (1) by putting N= 4N.

B'_{0}=4B_{0

Therefore, the option (ii) will work.

Consider the option (iii) by using equation (1).

B'_{0}=\frac{\mu NI_{0}}{L'}  

Divide this expression by the equation (1) by putting L'=\frac{L}{2}.

B'_{0}=2B_{0

Therefore, the option (iii) won't work.

Consider the option (iv) by using equation (1).

B_{0}=\frac{\mu NI_{0}}{L'}  

Divide this expression by the equation (1) by putting L'=\frac{L}{4}.

B'_{0}=4B_{0

Therefore, the option (iv) will work.

Consider the option (v) by using equation (1).

B'_{0}=\frac{\mu NI_{0}}{L}  

Divide this expression by the equation (1) by putting L'=\frac{L}{2} and N=2N.

B'_{0}=8B_{0

Therefore, the option (v) won't work.

Consider the option (vi) by using equation (1).

B_{0}=\frac{\mu N'I'_{0}}{L}  

Divide the above expression by the equation (1) by putting I'_{0}=2I_{0}  and N=2N .

B'_{0}=4B_{0

Therefore, the option (vi) will work.

Therefore, the options (ii),(iv) and (vi) will work.

You might be interested in
A car moving at 60 mph slams on its brakes to stop before hitting a deer. Another identical car traveling at 60 mph slows to a s
ankoles [38]

Happy Holidays!

Recall that:

Impulse = Change in Momentum = mass × change in velocity

Since both cars are identical and have the same initial velocity of 60 mph, them breaking to a stop means that they both experience the same change in velocity.

Thus, both of the cars' impulses are equal.

8 0
2 years ago
Tool
Ede4ka [16]

Answer:

9758 how many significant figures

3 0
2 years ago
On Earth, a brick has a mass of 10 kg and a weight of 5 lbs. What predictions could we make about the mass and weight of the bri
belka [17]

Answer:

Mass remains constant but weight reduces

Explanation:

Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.

Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.

Therefore, for this case, since g decreases, the weight decreases but mass remains constant.

8 0
2 years ago
A bullet with a mass 2.25g is fired up into the air with a velocity of 187.5 m/s. What is the maximum height of the bullet
Ksivusya [100]

Answer:

1793.7m

Explanation:

From the principle of conservation of energy; the kinetic energy substended by the object equals the potential energy sustain by the object when it gets to its maximum position.

Now the kinetic energy; is

K.E = 1/2 × m × v2

Where m is mass

v is velocity

Hence.

K.E = 1/2 × 2.25 × (187.5)^2

Now this should be same with the potential energy which is given as;

P.E = m× g× h

Where m is mass of object

g is acceleration of free fall due to gravity = 9.8m/S2

h is maximum height substain by the object.

Hence P.E = 2.25 × 9.8 × h

From the foregoing analysis of energy conversation it implies;

1/2 × 2.25 × (187.5)^2 =2.25 × 9.8 × h

=> 1/2 × (187.5)^2 = 9.8 × h

=>1/2 × (187.5)^2 / 9.8 = h

=> 1793.69m = h

h= 1793.69m

h =1793.7m to 1 decimal place

3 0
3 years ago
B)A man walks 95 km, East, then 55 km, north. Calculate his RESULTANT
Varvara68 [4.7K]

The resultant displacement of the man is 109.77 km in the direction N60°E.

<h3>Displacement</h3>

Displacement is the distance travelled in a specified direction.

To calculate displacement, the straight line from starting point to end point of travel is taken and calculated.

<h3>Resultant displacement of the man </h3>

In the example above, a man walks 95 km, East, then 55 km, north.

The two distances form a right-angled triangle with two sides 95 and 55 units. The hypotenuse gives the resultant displacement, D.

Using Pythagoras rule:

D^2 = 95^2 + 55^2

D^2 = 12050

D = 109.77

Thus, the resultant displacement is 109.77 km

To calculate the direction:

Let the direction be y

y + x = 90°

tan x = 55/95

tanx x = 0.578

x = 30°

Then, y = 90 - 30

y = 60°

Therefore, the resultant displacement of the man is 109.77 km in the direction N60°E.

Learn more about displacement at: brainly.com/question/321442

8 0
2 years ago
Other questions:
  • Will give brainliest to right answer!
    13·1 answer
  • According to the Hooke’s law formula, the force is proportional to what measurement?
    14·2 answers
  • What is steam engine it's action and reaction​
    14·1 answer
  • How many grams of butter, which has a usable energy content
    13·1 answer
  • What are the variables in Gay-Lussac's law? pressure and volume pressure, temperature, and volume pressure and temperature volum
    7·2 answers
  • @kikatkraken This is the energy of an object while it is in motion.
    9·1 answer
  • consider a charge of -15.0 mCmoving to the right a 2.00x10^6 m/s in a mganetic field of .0300 T pointing upwards. What is the ma
    8·1 answer
  • INTRO PHYSICS: Two planets are 3 x 10^7 km apart. Planet A has a mass of 8 x 10^24 kg. Planet B has a mass of 1 x 10^25 kg. What
    8·1 answer
  • How to find power of each resistor in a parallel circuit
    9·2 answers
  • A bike travels at 20mph for 5 hours, then 10 mph for 3 hours. What is the average speed?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!