Answer:
A = 3
B = -5
C = 2
Step-by-step explanation:
The way to format a quadratic equation is:
, so the first step to solving this is to format it in the right way, where the
comes first, the
second, and the number alone.
After formatting, your equation should look like this: 
From here, you can see the the <em>a </em> is 3, the <em>b</em> is -5, and the <em>c </em>is 2
Step-by-step explanation:
1/2(6x+1/2)=0
3x+1/4=0
3X=-1/4
X=3(-1/4)
X=-3/4
OR
X=-.75
Answer:
The length of s is 5.1 inches to the nearest tenth of an inch
Step-by-step explanation:
In Δ RST
∵ t is the opposite side to ∠T
∵ r is the opposite side to ∠R
∵ s is the opposite side to ∠S
→ To find s let us use the cosine rule
∴ s² = t² + r² - 2 × t × r × cos∠S
∵ t = 4.1 inches, r = 7.1 inches, and m∠S = 45°
→ Substitute them in the rule above
∴ s² = (4.1)² + (7.1)² - 2 × 4.1 × 7.1 × cos(45°)
∴ s² = 16.81 + 50.41 - 41.1677568
∴ s² = 26.0522432
→ Take √ for both sides
∴ s = 5.10413981
→ Round it to the nearest tenth
∴ s = 5.1 inches
∴ The length of s is 5.1 inches to the nearest tenth of an inch
Answer:
a: 0.9544 9 within 8 units)
b: 0.9940
Step-by-step explanation:
We have µ = 300 and σ = 40. The sample size, n = 100.
For the sample to be within 8 units of the population mean, we would have sample values of 292 and 308, so we want to find:
P(292 < x < 308).
We need to find the z-scores that correspond to these values using the given data. See attached photo 1 for the calculation of these scores.
We have P(292 < x < 308) = 0.9544
Next we want the probability of the sample mean to be within 11 units of the population mean, so we want the values from 289 to 311. We want to find
P(289 < x < 311)
We need to find the z-scores that correspond to these values. See photo 2 for the calculation of these scores.
We have P(289 < x < 311) = 0.9940