Answer:
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
Step-by-step explanation:
Tamira invests $5,000 in an account
Rate of interest = 4%
Time = 3 years
Case 1:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 1
Formula :

A=5624.32
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
Case 2:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 2
Formula : 

A=5630.812
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
Case 3:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula : 

A=5634.125
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
Case 4:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula :

A=5636.359
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
4.741
4.742
Really, you could stick any digit from 1-9 at the end of 4.74 to create your answer.
Answer: 1/25
Step-by-step explanation:
Answer:
3484.8 in inches
Step-by-step explanation:
turn feet to inches and multiply all values
Step-by-step explanation:
the introduction of a fraction tells us that we are dealing with multiplications, and therefore a geometric sequence (where every new term is created by multiplying the previous term by a constant factor, the ratio r).
I think your teacher made a mistake, or you made one when typing the question in here.
there is no factor r that creates
15×r = 9
and
9×r = 5/27
it would mean that
15 × r² = 5/27
r² = 5/27 / 15 = 5/27 × 1/15 = 5/405 = 1/81
r = 1/9
but 15 × 1/9 = 5 × 1/3 = 5/3 is NOT 9
and 9 × 1/9 = 9/9 = 1 is NOT 5/27
so, this can't be right.
on the other hand
15 × r = 9
r = 9/15 = 3/5
and then
9 × 3/5 = 27/5
so, either the sequence should have been
15, 5/3, 5/27
or (and I suspect this to be true)
15, 9, 27/5
under that assumption we have
s1 = 15
r = 3/5
sn = sn-1 × r = s1 × r^(n-1) = 15 × (3/5)^(n-1)
s10 = 15 × (3/5)⁹ = 15 × 19683/1953125 =
= 3 × 19683/390625 = 59049/390625 =
= 0.15116544 ≈ 0.151