Triangles a are similar because they have the same degrees
And Triangles d are similar because they are the same shape
16 is the answer to this question.
Function 1:
f(x) = -x² + 8(x-15)f(x) = -x² <span>+ 8x - 120
Function 2:
</span>f(x) = -x² + 4x+1
Taking derivative will find the highest point of the parabola, since the slope of the parabola at its maximum is 0, and the derivative will allow us to find that.
Function 1 derivative: -2x + 8 ⇒ -2x + 8 = 0 ⇒ - 2x = -8 ⇒ x = -8/-2 = 4
Function 2 derivative: -2x+4 ⇒ -2x + 4 = 0 ⇒ -2x = -4 ⇒ x = -4/-2 ⇒ x= 2
Function 1: f(x) = -x² <span>+ 8x - 120 ; x = 4
f(4) = -4</span>² + 8(4) - 120 = 16 + 32 - 120 = -72
<span>
Function 2: </span>f(x) = -x²<span> + 4x+1 ; x = 2
</span>f(2) = -2² + 4(2) + 1 = 4 + 8 + 1 = 13
Function 2 has the larger maximum.
Answer:
Step-by-step explanation:
Area = 84sqaure inch
Width = 2 1/2inch = 5/2inch
Area = l × width
So: 84 = l × 5/2
168 = 5l
l =>168/5
l = 33 3/5