y = 0m
y0 = 166m
v0y = 0 m/s
g = 9.8 m/s^2
t = ?
Solve for t:
y = y0 + v0y*t - (0.5)gt^2
0 = 166 - (0.5)(9.8)t^2
t = 5.82 s
Now, using time, we can solve for the range using the equation:
x = vx(t)
x = (40)(5.82)
x = 232.8 m
The impact horizontal component of velocity will be 40 m/s as velocity in terms of x is always constant. To find the impact vertical component of velocity, we use the equation:
v = v0y - gt
v = 0 - (9.8)(5.82)
v = -57.04 m/s
Mechanics is dealing with forces that are effecting some body, electrostatics is about electrical fields of not moving bodies, and quantum mechanics is dealing with quantum states of atoms.
Thermodynamics as the word say, is dealing with thermal energy that is moving (transferring from one body to another or even better from one medium to another).
Answer is C <span />
Answer:
W = 7.5 J
Explanation:
W = KE
W = ½mv² = ½0.6(5²) = 7.5 J
Niño, piedra y ascensor están todos en el mismo marco de referencia inercial.
los 2 m / s no son importantes.
Answer:
(B) Boundary work
(D) Heat
Explanation:
Boundary work and heat quantitatively describe the transition between equilibrium states of thermodynamic systems. They are not only a function of the initial and final states, but also of the successive intermediate states through which the system passes, this is, depend on the path taken to reach one state from another. Thus, are path functions.