Answer:
The width of the central bright fringe on the screen is observed to be unchanged is 
Explanation:
To solve the problem it is necessary to apply the concepts related to interference from two sources. Destructive interference produces the dark fringes. Dark fringes in the diffraction pattern of a single slit are found at angles θ for which

Where,
w = width
wavelength
m is an integer, m = 1, 2, 3...
We here know that as
as w are constant, then

We need to find
, then

Replacing with our values:


Therefore the width of the central bright fringe on the screen is observed to be unchanged is 
<span>A: put an atom on a poster in the exhibit
Good luck. The poster itself is made of trillions of trillions of trillions
of atoms. You could not see the extra one any easier than you could
see the ones that are already there, and even if you could, it would be
lost in the crowd.
B: use a life size drawing of an atom
Good luck. Nobody has ever seen an atom. Atoms are too small
to see. That's a big part of the reason that nobody knew they exist
until less than 200 years ago.
D: set up a microscope so that visitors can view atoms
Good luck. Atoms are way too small to see with a microscope.
</span><span><span>C: Display a large three dimensional model of an atom.
</span> </span>Finally ! A suggestion that makes sense.
If something is too big or too small to see, show a model of it
that's just the right size to see.
Answer:
The answer is 24cm
Explanation:
This problem bothers on the curved mirrors, a concave type
Given data
Object height h= 5cm
Object distance = 12cm
Focal length f=24cm
Let the image distance be v=?
Applying the formula we have
1/v +1/u= 1/f
Substituting our given data
1/v+1/12=1/24
1/v=1/24-1/12
1/v=1-2/24
1/v=-1/24
v= - 24cm
This implies that the image is on the same side as the object and it is real
"Wheel & Axle" <span>can be described as a shaft that is attached to the center of a wheel
Hope this helps!</span>
<span>the difference of electrical potential between two points. hope this helps</span>