It is 10.20 m from the ground.
<u>Explanation:</u>
<u>Given:</u>
m = 0.5 kg
PE = 50 J
We know that the Potential energy is calculated by the formula:

where m is the is mass in kg; g is acceleration due to gravity which is 9.8 m/s and h is height in meters.
PE is the Potential Energy.
Potential Energy is the amount of energy stored when an object is stationary.
Here, if we substitute the values in the formula, we get

50 = 0.5 × 9.8 × h
50 = 4.9 × h

h = 10.20 m
The phase of the Moon must be new, and the nodes of the Moon's orbit must be nearly aligned with Earth and the Sun.
Answer:
120 m
Explanation:
Given:
wavelength 'λ' = 2.4m
pulse width 'τ'= 100T ('T' is the time of one oscillation)
The below inequality express the range of distances to an object that radar can detect
τc/2 < x < Tc/2 ---->eq(1)
Where, τc/2 is the shortest distance
First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'
f = c/λ (c= speed of light i.e 3 x
m/s)
f= 3 x
/ 2.4
f=1.25 x
hz.
As, T= 1/f
time of one oscillation T= 1/1.25 x
T= 8 x
s
It was given that pulse width 'τ'= 100T
τ= 100 x 8 x
=> 800 x
s
From eq(1), we can conclude that the shortest distance to an object that this radar can detect:
= τc/2 => (800 x
x 3 x
)/2
=120m
Answer:
b
Explanation:
because a elastic band uses elastic energy
Answer:
local government agencies