1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
10

Radar uses radio waves of a wavelength of 2.4 \({\rm m}\) . The time interval for one radiation pulse is 100 times larger than t

he time of one oscillation; the time between pulses is 10 times larger than the time of one pulse. What is the shortest distance to an object that this radar can detect? Express your answer with the appropriate units.
Physics
1 answer:
blondinia [14]3 years ago
8 0

Answer:

120 m

Explanation:

Given:

wavelength 'λ' = 2.4m

pulse width 'τ'= 100T ('T' is the time of one oscillation)

The below inequality express the range of distances to an object that radar can detect

τc/2 < x < Tc/2 ---->eq(1)

Where, τc/2 is the shortest distance

First we'll calculate Frequency 'f' in order to determine time of one oscillation 'T'

f = c/λ (c= speed of light i.e 3 x 10^{8} m/s)

f= 3 x 10^{8} / 2.4

f=1.25 x  10^{8} hz.

As, T= 1/f

time of one oscillation T= 1/1.25 x  10^{8}

T= 8 x 10^{-9} s

It was given that pulse width 'τ'= 100T

τ= 100 x 8 x 10^{-9} => 800 x 10^{-9} s

From eq(1), we can conclude that the shortest distance to an object that this radar can detect:

x_{min}= τc/2 =>  (800 x 10^{-9} x 3 x 10^{8})/2

x_{min}=120m

You might be interested in
Newton's First Law of Motion states that an object will remain at rest or in uniform motion in a straight line unless acted upon
Leno4ka [110]

Law of inertia would be your answer.

4 0
4 years ago
Read 2 more answers
A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force
Tamiku [17]

Answer:

(a) 91 kg (2 s.f.)    (b) 22 m

Explanation:

Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.

(a)

                                                   s \ = \ ut \ + \ \displaystyle\frac{1}{2} at^{2} \\ \\ a \ = \ \displaystyle\frac{2(s \ - \ ut)}{t^{2}} \\ \\ a \ = \ \displaystyle\frac{2(11 \ - \ 0)}{5^{2}} \\ \\ a \ = \ \displaystyle\frac{22}{25} \\ \\ a \ = \ 0.88 \ \mathrm{m \ s^{-2}}

     Subsequently,

                                                  F \ = \ ma \\ \\ m \ = \ \displaystyle\frac{F}{a} \\ \\ m \ = \ \displaystyle\frac{80 \ \mathrm{kg \ m \ s^{-2}}}{0.88 \ \mathrm{m \ s^{-2}}} \\ \\ m \ = \ 91 \mathrm{kg} \ \ \ \ \ \ (2 \ \mathrm{s.f.})

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.

(b) To find the final velocity of the ice block at the end of the first 5 seconds,

                                                    v \ = \ u \ + \ at \\ \\ v \ = \ 0 \ + \ (0.88 \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \\ \\ v \ = \ 4.4 \ \mathrm{m \ s^{-1}}

     According to Newton's First Law which states objects will remain at rest

     or in uniform motion (moving at constant velocity) unless acted upon by

     an external force. Hence, the block of ice by the end of the first 5

     seconds, experiences no acceleration (a = 0) but travels with a constant

     velocity of 4.4 m \ s^{-1}.

                                                    s \ = \ ut \ + \ \displaystyle\frac{1}{2}at^{2} \\ \\ s \ = \ (4.4 \ \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \ + \ \displaystyle\frac{1}{2}(0)(5^{2}) \\ \\ s \ = \ 22 \ \mathrm{m}

      Therefore, the ice block traveled 22 m in the next 5 seconds after the

      worker stops pushing it.

4 0
3 years ago
24 A uniform electric field of magnitude 1.1×104 N/C is perpendicular to a square sheet with sides 2.0 m long. What is the elect
Tatiana [17]

Answer:

44,000 Nm^2/C

Explanation:

The electric flux through a certain surface is given by (for a uniform field):

\Phi = EA cos \theta

where:

E is the magnitude of the electric field

A is the area of the surface

\theta is the angle between the direction of the field and of the normal to the surface

In this problem, we have:

E=1.1\cdot 10^4 N/C is the electric field

L = 2.0 m is the side of the sheet, so the area is

A=L^2=(2.0)^2=4.0 m^2

\theta=0^{\circ}, since the electric field is perpendicular to the surface

Therefore, the electric flux is

\Phi =(1.1\cdot 10^4)(4.0)(cos 0^{\circ})=44,000 Nm^2/C

4 0
3 years ago
a car goes from a velocity zero to a velocity of 15 meters per second East in 2.1 seconds. What is the car's acceleration?
leva [86]
31.5 would be the acceleration.
3 0
3 years ago
A 5.0 kg block hangs from the ceiling by a mass-less rope. A Second block with a mass of 10.0 kg is attached to the first block
gayaneshka [121]

The tension in the first and second rope are; 147 Newton and 98 Newton respectively.

Given the data in the question

  • Mass of first block; m_1 = 5.0kg
  • Mass of second block, m_2 =10kg
  • Tension on first rope; T_1 =\ ?
  • Tension on second rope; T_2 =\ ?

To find the Tension in each of the ropes, we make use of the equation from Newton's Second Laws of Motion:

F = m\ *\ a

Where F is the force, m is the mass of the object and a is the acceleration ( In this case the block is under gravity. Hence ''a" becomes acceleration due to gravity  g = 9.8m/s^2 )

For the First Rope

Total mass hanging on it; m_T = m_1 + m_2 = 5.0kg + 10.0kg = 15.0kg

So Tension of the rope;

F = m\ * \ g\\\\F = 15.0kg \ * 9.8m/s^2\\\\F = 147 kg.m/s^2\\\\F = 147N

Therefore, the tension in the first rope is 147 Newton

For the Second Rope

Since only the block of mass 10kg is hang from the second, the tension in the second rope will be;

F = m\ * \ g\\\\F = 10.0kg \ * 9.8m/s^2\\\\F = 98 kg.m/s^2\\\\F = 98N

Therefore, the tension in the second rope is 98 Newton

Learn More, brainly.com/question/18288215

4 0
2 years ago
Read 2 more answers
Other questions:
  • How are oceans connected to all bodies of water
    14·1 answer
  • Find the resultant of the following forces: 3.0N east, 4.0N west, and 5.0N in a direction north 60° west.
    14·1 answer
  • Has anyone read the book Third level
    9·2 answers
  • What is cos(6)?<br><br> A. 0.99<br> B. 0.60<br> C. 0.10<br> D. 0.06
    5·2 answers
  • 4.<br> What distance would a car travel after 4 hours travelling at 60mph?
    8·2 answers
  • Suppose a ball has a potential energy of 5 J when you drop it. What would be its kinetic energy just as it hit the ground? (Igno
    7·1 answer
  • How do we maintain heat in our body ?​
    15·1 answer
  • Which element is LEAST likely to react with Magnesium?
    11·1 answer
  • A car traveling at 90 m/s can stop in a distance of 110 m. What is the magnitude of the cars acceleration as it slows down?
    7·1 answer
  • A car travels 30 kilometers north for 2 hours, then travels 45 kilometers east for 3 hours. The car then drives south for 30 kil
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!