Answer:
The time is 133.5 sec.
Explanation:
Given that,
One side of cube = 10 cm
Intensity of electric field = 11 kV/m
Suppose How long will it take to raise the water temperature by 41°C Assume that the water has no heat loss during this time.
We need to calculate the rate of energy transfer from the beam to the cube
Using formula of rate of energy
Put the value into the formula
We need to calculate the amount of heat
Using formula of heat
Put the value into the formula
We need to calculate the time
Using formula of time
Put the value into the formula
Hence, The time is 133.5 sec.
Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =
- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
Given Information:
Power = P = 100 Watts
Voltage = V = 220 Volts
Required Information:
a) Current = I = ?
b) Resistance = R = ?
Answer:
a) Current = I = 0.4545 A
b) Resistance = R = 484 Ω
Explanation:
According to the Ohm’s law, the power dissipated in the light bulb is given by
Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.
Re-arranging the above equation for current I yields,
Therefore, 0.4545 A current is flowing through the light bulb.
According to the Ohm’s law, the voltage across the light bulb is given by
Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.
Re-arranging the above equation for resistance R yields,
Therefore, the resistance of the bulb is 484 Ω
Answer:
Explanation:
Given that;
horizontal circle at a rate of 2.33 revolutions per second
the magnetic field of the Earth is 0.500 gauss
the baton is 60.1 cm in length.
the magnetic field is oriented at 14.42°
we wil get the area due to rotation of radius of baton is
The formula for the induced emf is
B is the magnetic field strength
substitute
The magnetic field of the earth is oriented at 14.42
we plug in the values in the equation above
so, the induce EMF will be